• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • JavaScript
  • Excel

Curso de introducción a Julia: ¡Hola Julia!

septiembre 22, 2020 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 2 minutos

Durante el verano de 2020 se ha publicado una serie de entradas temáticas sobre el lenguaje de programación Julia. Una serie que puede usarse como un curso de introducción a Julia. Un lenguaje moderno para análisis de datos y aprendizaje automático que se caracteriza por ser más rápido que Python, R o Matlab.

Contenido del curso

La serie consta de las siguientes 20 entradas:

  1. ¡Hola Julia!
  2. Primeros pasos con Julia
  3. Cadenas de texto en Julia
  4. Bucles en Julia
  5. Funciones en Julia
  6. Vectores, tuplas y diccionarios en Julia
  7. Estructuras en Julia
  8. Utilizar los tipos en Julia
  9. Tipos de datos en Julia
  10. Tipos y funciones paramétricos en Julia
  11. Introducción a los DataFrames en Julia
  12. Obtener información básica de los DataFrames de Julia
  13. El tipo de dato Missing de Julia
  14. Columnas en DataFrames de Julia
  15. Filas en DataFrames de Julia
  16. Combinar DataFrames en Julia
  17. Guardar y leer archivos CSV en Julia
  18. Guardar y leer archivos Excel en Julia
  19. Introducción a Genie
  20. Libros sobre Julia

Para la serie se ha utilizado Julia 1.4.2, la ultima versión disponible en el momento de publicación de la entrada.

Que es Julia

Julia es un lenguaje de programación dinámico de alto nivel y rendimiento. Aunque es un lenguaje de programación de propósito general, por lo que se puede utilizar para escribir cualquier aplicación, la mayoría de sus características se han diseñado pensando especialmente en análisis numérico, el tratamiento de datos y el aprendizaje automático. Por lo que lo convierten en una alternativa a los utilizados actualmente en esas áreas como Python o R.

Julia es un lenguaje de programación dinámico con un sistema de tipos con polimorfismo paramétrico. Con el que se puede realizar computación paralela y distribuida concurrente. Además de poder realizar llamadas directas de las bibliotecas C y Fortran sin código, con lo que es posible reutilizar el código existente. Julia usa un compilador just-in-time (JIT), traduciendo los programas a código máquina antes de ejecutarlo. Lo que hace que sea más rápido que los lenguajes interpretados.

Publicidad


¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicaciones relacionadas

  • Tipos de datos en Julia (9ª parte – ¡Hola Julia!)
    Tipos de datos en Julia (9ª parte – ¡Hola Julia!)
  • Bucles en Julia (4ª parte - ¡Hola Julia!)
    Bucles en Julia (4ª parte - ¡Hola Julia!)
  • Guardar y leer archivos Excel en Julia (18ª parte – ¡Hola Julia!)
    Guardar y leer archivos Excel en Julia (18ª parte – ¡Hola…
  • Columnas en DataFrames de Julia (14ª parte – ¡Hola Julia!)
    Columnas en DataFrames de Julia (14ª parte – ¡Hola Julia!)
  • Introducción a Genie (19ª parte – ¡Hola Julia!)
    Introducción a Genie (19ª parte – ¡Hola Julia!)
  • Obtener información básica de los DataFrames de Julia (12ª parte – ¡Hola Julia!)
    Obtener información básica de los DataFrames de Julia (12ª…

Publicado en: Julia

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad




Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Facebook
  • GitHub
  • Instagram
  • Pinterest
  • RSS
  • Twitter
  • Tumblr
  • YouTube

Publicidad

Entradas recientes

El método de Hare-Niemeyer y su implementación en Python

septiembre 29, 2023 Por Daniel Rodríguez

Redimensionar una partición de disco LVM con espacio no asignado en Linux

septiembre 27, 2023 Por Daniel Rodríguez

¿Cómo saber la versión de Pandas o cualquier otra librería en Python?

septiembre 25, 2023 Por Daniel Rodríguez

Publicidad

Es tendencia

  • ¿Cómo eliminar columnas y filas en un dataframe pandas? publicado el marzo 25, 2019 | en Python
  • La aplicación Auto Py to Exe Creación de un EXE desde un archivo Python en Windows publicado el mayo 16, 2022 | en Python
  • Seleccionar filas y columnas en Pandas con iloc y loc publicado el junio 21, 2019 | en Python
  • ¿Cómo cambiar el nombre de las columnas en Pandas? publicado el mayo 6, 2019 | en Python
  • Gráficos de barras en Matplotlib publicado el julio 5, 2022 | en Python

Publicidad

Lo mejor valorado

4.9 (22)

Seleccionar filas y columnas en Pandas con iloc y loc

4.7 (12)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.6 (15)

Archivos JSON con Python: lectura y escritura

4.5 (10)

Diferencias entre var y let en JavaScript

4.3 (12)

Ordenación de diccionarios en Python mediante clave o valor

Publicidad

Comentarios recientes

  • Daniel Rodríguez en ¿Cómo eliminar columnas y filas en un dataframe pandas?
  • Miguel en ¿Cómo eliminar columnas y filas en un dataframe pandas?
  • alberto en Resolver problema de credenciales en Bitbucket
  • Pablo en Aplicar el método D’Hondt en Excel
  • Agapito en Creación de un EXE desde un archivo Python en Windows

Publicidad

Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2023 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto