• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Herramientas
    • Método D’Hondt – Atribución de escaños
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • Excel
  • IA Generativa

Mejoras en el tipado de datos de Python 3.10

octubre 4, 2021 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 1 minuto

Noticias

Python es un lenguaje con tipado fuerte de datos. No permite realizar operaciones cuando los tipos de datos de las variables son no compatibles, como sumar un real con una cadena de caracteres. Aunque no sea una de las funciones más utilizadas de Python, este permite la anotación de tipos en las definiciones de las funciones. Una opción con la que es posible mejorar la legibilidad del código. Además de ayudar a la identificación de algunos errores que de otra forma serían mucho más difíciles de localizar. Posiblemente con las mejoras en el tipado de datos de Python 3.10 el uso de estas anotaciones sea más sencillo.

Unión de tipos en Python 3.10

Hasta el lanzamiento de Python 3.10 para indicar que un parámetro de una función acepta más de un tipo de datos era necesario importar Union.

from typing import Union

def power(x: Union[int, float]) -> Union[int, float]:
    return x ** 2

Ahora, con Python 3.10, esto ya no es necesario, se puede usar el operador | para indicar que esta unión de tipos.

def power(x: int | float) -> int | float:
    return x ** 2

Una importante novedad que hace más sencillo la anotación de los tipos en las funciones. Algo con lo que se puede evitar problemas a la hora de llamar a estas, ya que, si el tipo de dato no coincide con el declarado, tendremos un error en tiempo de ejecución. Errores que generalmente son más fáciles de identificar y solucionar.

Análisis de Redes con Python
En Analytics Lane
Análisis de Redes con Python

Imagen de Michael Gaida en Pixabay

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicidad


Publicaciones relacionadas

  • ¡Nuevo video! 5 formas prácticas de obtener valores únicos en Pandas
  • 1100 publicaciones en Analytics Lane
  • ¡Nuevo video! Encuentra la posición en listas como un PRO
  • ¡Nuevo video! Iterar filas en Pandas sin romperte la cabeza
  • ¡Nuevo video! Gráficos de barras en Matplotlib sin complicarte

Publicado en: Noticias

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

¡Nuevo video! Gráficos de barras en Matplotlib sin complicarte

julio 17, 2025 Por Daniel Rodríguez

¡Nuevo video! Iterar filas en Pandas sin romperte la cabeza

julio 15, 2025 Por Daniel Rodríguez

¡Nuevo video! Encuentra la posición en listas como un PRO

julio 10, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Obtención de valores únicos de una columna con Pandas publicado el mayo 8, 2019 | en Python
  • Cómo encontrar la posición de elementos en una lista de Python publicado el abril 12, 2021 | en Python
  • Solución al error Failed to download metadata for repo ‘AppStream’ en CentOS 8 publicado el septiembre 13, 2023 | en Herramientas
  • Combinar varios archivos Jupyter Notebook en uno publicado el noviembre 21, 2022 | en Python
  • Sistema de ecuaciones Sistemas de ecuaciones lineales con numpy publicado el octubre 29, 2018 | en Python

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes
  • Javier en Tutorial de Mypy para Principiantes
  • javier en Problemas con listas mutables en Python: Cómo evitar efectos inesperados
  • soldado en Numpy básico: encontrar la posición de un elemento en un Array de Numpy

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto