• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • IA Generativa
  • Python
  • Pandas
  • NumPy
  • R
  • Excel

Python

Python es un lenguaje de programación interpretado con una filosofía basada en la legibilidad del código. Un lenguaje que gracias posee un gran ecosistema de librerías para la ciencia de datos. Por lo que es uno de los más populares en la actualidad entre los científicos de datos. Además, es uno de los lenguajes más deseados y adorados por los programadores según las encuestas de Stack Overflow.

Python es un lenguaje de programación interpretado de propósito general que obliga al uso de una sintaxis clara, gracias a la cual el código es altamente legible. Siendo un lenguaje potente y fácil de aprender. Además, permite utilizar múltiples paradigmas de programación. Lo que permite usar desde programación orientada a objetos, pasando por programación imperativa o funcional.

Los paquetes de Python más utilizados por los científicos son:

  • NumPy: permite el tratamiento de datos basados en matrices,
  • Pandas: ideal para la manipulación de datos heterogéneos mediante objetos DataFrame,
  • SciPy: implementa tareas habituales en computación científica,
  • Matplotlib: facilita la visualización de datos y scikit-learn creación de modelos de aprendizaje automático.

Las publicaciones de esta sección versan sobre estas librerías y las bases del lenguaje.

Optimización de cálculos vectorizados con NumPy: Aprovechando Numpy para reemplazar bucles

enero 27, 2025 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

NumPy

El uso de bucles para procesar grandes volúmenes de datos o realizar cálculos matemáticos intensivos en Python puede resultar lento e ineficiente. Aunque los bucles son fáciles de implementar y leer, la necesidad de evaluar repetidamente las mismas líneas de código limita la eficiencia del intérprete de Python, impidiendo que las operaciones se realicen de manera óptima en el … [Leer más...] acerca de Optimización de cálculos vectorizados con NumPy: Aprovechando Numpy para reemplazar bucles

Evaluar similitudes entre señales: Cómo calcular la correlación cruzada con np.correlate() en NumPy

enero 24, 2025 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 9 minutos

En el análisis de señales y series temporales, una de las tareas más comunes es medir la similitud entre dos conjuntos de datos. Este proceso, conocido como correlación cruzada, es fundamental para identificar patrones recurrentes, determinar retrasos entre señales o realizar comparaciones en áreas como el procesamiento de audio, meteorología y finanzas. Sin embargo, calcular … [Leer más...] acerca de Evaluar similitudes entre señales: Cómo calcular la correlación cruzada con np.correlate() en NumPy

Anotaciones dinámicas en Matplotlib: Cómo usar mplcursors para destacar puntos clave al mover el cursor

enero 20, 2025 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 8 minutos

Incluir anotaciones en gráficos es fundamental para resaltar la información relevante, especialmente al analizar grandes volúmenes de datos o cuando la interpretación de estos no es inmediata. Sin embargo, un exceso de anotaciones estáticas puede saturar los gráficos y dificultar su lectura. Por ejemplo, en un gráfico de dispersión con cientos de puntos, añadir etiquetas para … [Leer más...] acerca de Anotaciones dinámicas en Matplotlib: Cómo usar mplcursors para destacar puntos clave al mover el cursor

Comparación de arrays en NumPy: Uso de np.allclose() y np.isclose() para comparaciones con tolerancia

enero 13, 2025 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 5 minutos

NumPy

Cuando se trabaja con datos, comparar valores se convierte en una tarea frecuente. Sin embargo, en muchos casos, aunque los valores deberían ser iguales, no lo son debido a errores de redondeo o imprecisiones derivadas de la representación de números en punto flotante. Esto puede hacer que las comparaciones directas arrojen resultados incorrectos, lo que obliga a adoptar … [Leer más...] acerca de Comparación de arrays en NumPy: Uso de np.allclose() y np.isclose() para comparaciones con tolerancia

Anotaciones en gráficos de correlación en Seaborn: Mejorando la interpretación con etiquetas

diciembre 16, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 7 minutos

Los gráficos de correlación son herramientas esenciales para identificar y visualizar las relaciones entre las variables de un conjunto de datos. Estos gráficos permiten representar correlaciones positivas, negativas e incluso nulas, utilizando escalas de colores para facilitar la interpretación general. Por esta razón, a menudo también se les conoce como mapas de calor.Sin … [Leer más...] acerca de Anotaciones en gráficos de correlación en Seaborn: Mejorando la interpretación con etiquetas

Tutorial: Creando un mapa interactivo con Folium en Python

diciembre 13, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 7 minutos

Aplicación web interactiva que muestra un mapa de Madrid con puntos de interés destacados, creado utilizando la biblioteca Folium.

En este tutorial, se mostrará cómo crear un mapa interactivo utilizando Folium, una poderosa biblioteca de Python para visualización geoespacial. Además, se integrará este mapa en una aplicación web sencilla utilizando Flask, permitiendo que esté disponible en localhost:3000. A lo largo del tutorial, también se verá cómo obtener y mostrar puntos de interés dinámicamente en el … [Leer más...] acerca de Tutorial: Creando un mapa interactivo con Folium en Python

Uso de índices jerárquicos en Pandas: Domina df.set_index() y df.unstack()

diciembre 9, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 5 minutos

pandas

Manejar datos tabulares de forma eficiente es una habilidad esencial en la mayoría de los análisis de datos. Sin embargo, las estructuras tradicionales con filas y columnas simples a menudo no son suficientes para capturar algunas relaciones complejas presentes en muchos conjuntos de datos. En estos casos, los índices jerárquicos en Pandas, también conocidos como índices … [Leer más...] acerca de Uso de índices jerárquicos en Pandas: Domina df.set_index() y df.unstack()

Manipulación de dimensiones en Numpy: Uso de np.reshape() y np.flatten()

diciembre 2, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 4 minutos

NumPy

Al trabajar con conjuntos de datos reales, es poco común que estos lleguen en el formato ideal para su uso directo. Por lo general, es necesario reorganizar, transformar o modificar su estructura para adaptarlos a los requisitos específicos de diferentes algoritmos o modelos. Numpy, una de las bibliotecas más populares de Python para operaciones matemáticas y manipulación de … [Leer más...] acerca de Manipulación de dimensiones en Numpy: Uso de np.reshape() y np.flatten()

Generación y manipulación de números aleatorios en NumPy

noviembre 25, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 5 minutos

NumPy

Los números aleatorios son fundamentales para muchas aplicaciones donde es necesario simular cierta impredecibilidad en los datos. Por ejemplo, a la hora de realizar un muestreo de datos o una simulación de Montecarlo. Por ello, la biblioteca NumPy de Python cuenta con diferentes funciones con las que se pueden crear número aleatorios de forma rápida y eficiente. En esta … [Leer más...] acerca de Generación y manipulación de números aleatorios en NumPy

Indexación avanzada en NumPy: cómo simplificar la manipulación de arrays

noviembre 18, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 4 minutos

NumPy

La indexación es una técnica usada en NumPy para acceder y manipular los valores de los arrays. A pesar de esto, cuando se trabaja con grandes volúmenes de datos la indexación básica puede no ser suficiente. En estos casos es cuando se puede recurrir a la indexación avanzada en NumPy. La indexación avanzada facilita la selección y manipulación de subarrays de una manera … [Leer más...] acerca de Indexación avanzada en NumPy: cómo simplificar la manipulación de arrays

Cómo buscar y reemplazar texto con expresiones regulares en pandas

noviembre 11, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 4 minutos

pandas

El análisis y limpieza de datos son tareas clave para el éxito en cualquier proyecto de análisis de datos. En el caso de que algunos de los datos a analizar sean de tipo texto, las expresiones regulares se vuelven una herramienta imprescindible para poder manipular estos de forma precisa y eficiente. Tarea que se puede realizar directamente en Pandas. En Python, la biblioteca … [Leer más...] acerca de Cómo buscar y reemplazar texto con expresiones regulares en pandas

Cómo validar nombres de hojas (sanitizar) y archivos Excel con Python

noviembre 4, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 5 minutos

Al trabajar con archivos Excel en Python, es posible encontrarse con problemas relacionados con los nombres de las hojas o de los archivos. Especialmente cuando estos los introduce un usuario. Por ejemplo, los nombres de las hojas en Excel tienen restricciones de longitud y no permiten ciertos caracteres. Lo mismo que los nombres de archivos. En esta entrada, se explicará cómo … [Leer más...] acerca de Cómo validar nombres de hojas (sanitizar) y archivos Excel con Python

  • « Ir a la página anterior
  • Página 1
  • Página 2
  • Página 3
  • Página 4
  • Página 5
  • Páginas intermedias omitidas …
  • Página 34
  • Ir a la página siguiente »

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Cómo crear un Data Lake en Azure paso a paso

noviembre 13, 2025 Por Daniel Rodríguez

¿Por qué el azar no es tan aleatorio como parece?

noviembre 11, 2025 Por Daniel Rodríguez

Noticias

Detectan vulnerabilidad crítica en MLflow que permite ejecución remota de código

noviembre 10, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Instantáneas de VirtualBox (Snapshots) publicado el marzo 27, 2019 | en Herramientas
  • Cómo encontrar la posición de elementos en una lista de Python publicado el abril 12, 2021 | en Python
  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas publicado el mayo 10, 2019 | en Python
  • Curiosidad: ¿Por qué los datos “raros” son tan valiosos? publicado el noviembre 6, 2025 | en Ciencia de datos, Opinión
  • pandas Pandas: Contar los valores nulos en DataFrame publicado el agosto 12, 2021 | en Python

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto