• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • IA Generativa
  • Python
  • Pandas
  • NumPy
  • R
  • Excel

Matplotlib

Creación de gráficos animados con Python

mayo 4, 2020 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 3 minutos

Una de las herramientas más eficaces para la presentación de los resultados son los gráficos. Eficacia que se puede aumentar al animarlos. La creación de gráficos animados en Python es una tarea realmente sencilla gracias a MoviePy. Un módulo para la edición de video que se puede usar tanto para operaciones básicas, como para el procesamiento y la creación de efectos avanzados … [Leer más...] acerca de Creación de gráficos animados con Python

Mapas de calor y diagramas de araña en Python

febrero 25, 2019 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 4 minutos

En una entrada anterior se ha visto algunos de los gráficos más importantes disponibles en la librería de Python Seaborn. En esta ocasión se va a ver cómo construir en Python dos tipos de gráficos que pueden ser muy útiles: los mapas de calor y los diagramas de araña. Para construir el primero de ellos se utilizará Seaborn, mientras que para el segundo se utilizará matplotlib. … [Leer más...] acerca de Mapas de calor y diagramas de araña en Python

Creación de gráficos interactivos en Jupyter Notebook con Python

septiembre 17, 2018 Por Daniel Rodríguez 2 comentarios
Tiempo de lectura: 4 minutos

Para la exploración de datos los gráficos interactivos es una solución que facilita la tarea. Poder comprobar cómo cambian los resultados al modificar uno o varios parámetros facilitan la comprensión del efecto de estos. A continuación, se explicará cómo crear gráficos interactivos en Jupyter Notebook con Python.IntroducciónEn muchas ocasiones es interesante poder … [Leer más...] acerca de Creación de gráficos interactivos en Jupyter Notebook con Python

  • « Ir a la página anterior
  • Página 1
  • Página 2
  • Página 3
  • Página 4

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Cómo crear un Data Lake en Azure paso a paso

noviembre 13, 2025 Por Daniel Rodríguez

¿Por qué el azar no es tan aleatorio como parece?

noviembre 11, 2025 Por Daniel Rodríguez

Noticias

Detectan vulnerabilidad crítica en MLflow que permite ejecución remota de código

noviembre 10, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Instantáneas de VirtualBox (Snapshots) publicado el marzo 27, 2019 | en Herramientas
  • Creación de gráficos de barras y gráficos de columnas con Seaborn publicado el julio 18, 2023 | en Python
  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas publicado el mayo 10, 2019 | en Python
  • Hoja de cálculo para repartir los escaños en base al método D’Hont Aplicar el método D’Hondt en Excel publicado el abril 14, 2021 | en Herramientas
  • Método del codo (Elbow method) para seleccionar el número óptimo de clústeres en K-means publicado el junio 9, 2023 | en Ciencia de datos

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto