Opinión

Aprendizaje automático para la detección del fraude en seguros

La industria de seguros es un sector muy atractivo para el crimen especializado en fraude. Debido a que, al igual que el caso de banca, las empresas aseguradoras gestionan grandes cantidades de dinero y datos confidenciales de sus asegurados. En este sector, los clientes siempre pueden simular siniestros para acceder al pago de los seguros, lo que puede llevar a grandes pérdidas. Por lo que el aprendizaje automático es una herramienta clave para la detección del fraude en seguros.

Prevención de reclamaciones fraudulentas y duplicadas

Las reclamaciones fraudulentas o duplicadas es uno de los principales problemas que se pueden encontrar las compañías aseguradoras. En los que nos podemos encontrar con tres tipos de operaciones básicas:

  • El tomador de la póliza puede declarar un siniestro inexistente para acceder al pago que le corresponde en el caso de que este sucediese.
  • En otras ocasiones el asegurado puede intentar engañar a la compañía para recibir el pago de un siniestro que ha sucedido en la realidad más de una vez.
  • Un estafador que puede haber robado los datos del asegurado para hacerse pasar por él y acceder al cobro de los siniestros.

En los tres casos es posible utilizar la detección de patrones para reconocer los casos fraudulentos de los reales. En los que las técnicas de aprendizaje automático son clave. Para el primer y segundo caso, se pueden utilizar los datos disponibles como son los antecedentes del cliente en otras compañías de seguros y el tiempo que este lleva con el seguro, ya que este tipo de fraude es más habitual en pólizas recientemente contratadas. Por otro lado, en el tercer caso se puede llegar a conclusiones mediante análisis de comportamiento.

Medición del riesgo

Al igual que en el caso de banca, aunque no es un caso exclusivamente de fraude, una de primeras aplicaciones del aprendizaje automático en el sector asegurador es la medición del riesgo de los asegurados. Lo que permite fijar mejor el valor real de las pólizas. En el momento en el que un cliente solicita una nueva póliza, los sistemas puede evaluar toda la información sobre este calculando la probabilidad de que suceda un siniestro cubierto, así como el valor esperado. Usando para ello los datos disponibles y relevantes para los siniestros cubiertos.

Conclusiones

El uso del aprendizaje automático para la detección del fraude en seguros es clave para evitar importantes pérdidas. La existencia de datos hace que sea posible crear grandes sistemas fiables para detectar estos problemas.

Imagen de Gerd Altmann en Pixabay

¿Te ha parecido de utilidad el contenido?

Daniel Rodríguez

Share
Published by
Daniel Rodríguez

Recent Posts

Curiosidad: La Paradoja de Simpson, o por qué no siempre debes fiarte de los promedios

En ciencia de datos y estadística, los promedios y porcentajes son herramientas fundamentales para resumir…

22 horas ago

Copias de seguridad automáticas en SQL Server con rotación de archivos

Las bases de datos son el corazón de casi cualquier sistema de información moderno. Ya…

3 días ago

Curiosidad: La Ley de Twyman y la trampa de los datos “interesantes”

En ciencia de datos, pocas cosas llaman más la atención de los científicos de datos…

1 semana ago

Cómo calcular el tamaño de la muestra para encuestas

Calcular adecuadamente el tamaño de la muestra es una parte esencial en el diseño de…

1 semana ago

Curiosidad: El origen del análisis exploratorio de datos y el papel de John Tukey

Hoy en día, cuando pensamos en ciencia de datos, lo primero que nos viene a…

2 semanas ago

Cómo extender el tamaño de un disco en Rocky Linux 9 usando growpart y LVM

Ampliar el espacio de almacenamiento en un sistema Linux es una tarea habitual y crítica…

2 semanas ago

This website uses cookies.