La inteligencia artificial generativa se está posicionando como una tecnología clave para redefinir el futuro de múltiples sectores, incluyendo el de los seguros. Esta tecnología no solo permite rediseñar procesos, sino que también mejora la experiencia del cliente y aumenta la eficiencia operativa.A diferencia de la inteligencia artificial tradicional (Machine Learning), … [Leer más...] acerca de Inteligencia artificial generativa en seguros: Cinco aplicaciones que están transformando la industria
Ciencia de datos
La ciencia de datos es un área de conocimiento interdisciplinar en el cual se utilizan procesos para recopilar, preparar, analizar, visualizar y modelar datos para extraer todo su valor. Pudiéndose emplear tanto con conjuntos de datos estructurados como no estructurados. Los científicos de datos, los profesionales de esta área deben poseer grandes conocimientos de estadística e informática. Además de conocimiento de los procesos que están modelando.
Con la ciencia de datos es posible revelar tendencias y obtener información para que tanto las empresas como las instituciones puedan tomar mejores decisiones. Basando estas así en conocimiento validado no en intuiciones.
Las publicaciones de esta sección abarca diferentes temas de áreas como la estadística, la minería de datos, el aprendizaje automático y la analítica predictiva.
Ratios para evaluar fondos de inversión y ETFs: Sharpe, Sortino, Treynor y Alpha de Jensen
Al analizar un fondo de inversión o un ETF, es crucial no centrarse únicamente en su rentabilidad pasada. Para evaluar su desempeño de manera integral, es fundamental considerar cómo se han obtenido esas rentabilidades en relación con el riesgo asumido. Una rentabilidad ligeramente superior puede implicar una exposición significativamente mayor al riesgo, lo que no siempre es … [Leer más...] acerca de Ratios para evaluar fondos de inversión y ETFs: Sharpe, Sortino, Treynor y Alpha de Jensen
Selección del número de componentes principales mediante el Método de Reconstrucción del Error
En el análisis de componentes principales (PCA), disponer de un método para identificar el número óptimo de componentes principales es fundamental para reducir el número de elementos sin perder información. Una forma intuitiva y práctica de hacer esto es mediante el Método de Reconstrucción del Error. Bajo este enfoque, en primer lugar, se debe cuantificar la pérdida de … [Leer más...] acerca de Selección del número de componentes principales mediante el Método de Reconstrucción del Error
Interpretación de las estadísticas para evaluar el rendimiento de fondos de inversión y ETFs
Para evaluar el rendimiento de los fondos de inversión o ETFs existen múltiples estadísticas que permiten analizar no solo la rentabilidad bruta de la inversión, sino también el nivel de riesgo y su relación con el mercado. Gracias a estas métricas, los inversores pueden determinar si una inversión se ajusta a sus objetivos. Por ello, saber cómo interpretar estas estadísticas … [Leer más...] acerca de Interpretación de las estadísticas para evaluar el rendimiento de fondos de inversión y ETFs
Cómo determinar el número de componentes en PCA usando el Criterio de Kaiser
El análisis de componentes principales (PCA, por sus siglas en inglés) es una de las herramientas más populares para reducir la dimensionalidad de los conjuntos de datos. Sin embargo, uno de los mayores desafíos al trabajar con PCA es decidir cuántos componentes principales conservar para capturar la mayor cantidad de información posible sin incluir ruido innecesario. Una … [Leer más...] acerca de Cómo determinar el número de componentes en PCA usando el Criterio de Kaiser
Procesadores cuánticos en Machine Learning e Inteligencia Artificial: Transformando el futuro de la tecnología
La computación cuántica es uno de los campos de estudio con mayor potencial para revolucionar la ciencia de la computación, especialmente al permitir abordar problemas que los ordenadores actuales no pueden resolver en tiempo razonable. Los procesadores cuánticos están llamados a una nueva era dentro del campo de la computación. Pero ¿qué hace que esta tecnología sea tan … [Leer más...] acerca de Procesadores cuánticos en Machine Learning e Inteligencia Artificial: Transformando el futuro de la tecnología
Diferencia entre población y muestra: La clave para entender la estadística sin complicaciones
En estadística, existen dos términos que aparecen constantemente, pueden parecer lo mismo, aunque no lo son, y son esenciales para interpretar los resultados: población y muestra. Es importante saber distinguir lo que significa cada uno. Aunque pueden parecer conceptos simples, comprender cada uno es fundamental para interpretar correctamente los resultados de los análisis. … [Leer más...] acerca de Diferencia entre población y muestra: La clave para entender la estadística sin complicaciones
Cómo determinar el número de componentes en PCA usando la varianza explicada acumulada
El análisis de componentes principales (PCA, por sus siglas en inglés) es una técnica ampliamente utilizada para reducir la dimensionalidad en conjuntos de datos. Una de las decisiones clave al aplicar PCA es determinar el número de componentes que se deben seleccionar, logrando un equilibrio entre capturar la mayor cantidad de información posible y evitar redundancias … [Leer más...] acerca de Cómo determinar el número de componentes en PCA usando la varianza explicada acumulada
Evaluar similitudes entre señales: Cómo calcular la correlación cruzada con np.correlate() en NumPy
En el análisis de señales y series temporales, una de las tareas más comunes es medir la similitud entre dos conjuntos de datos. Este proceso, conocido como correlación cruzada, es fundamental para identificar patrones recurrentes, determinar retrasos entre señales o realizar comparaciones en áreas como el procesamiento de audio, meteorología y finanzas. Sin embargo, calcular … [Leer más...] acerca de Evaluar similitudes entre señales: Cómo calcular la correlación cruzada con np.correlate() en NumPy
Inteligencia artificial generativa en banca: Cinco aplicaciones que están transformando el sector bancario
La revolución tecnológica impulsada por la inteligencia artificial (IA) está remodelando industrias enteras, y el sector bancario no es una excepción. En el corazón de esta transformación se encuentran los Modelos Avanzados de Lenguaje (LLM, por sus siglas en inglés, Large Language Models). Estas herramientas, como GPT (Generative Pre-trained Transformer), representan una … [Leer más...] acerca de Inteligencia artificial generativa en banca: Cinco aplicaciones que están transformando el sector bancario
Entendiendo el margen de error de las encuestas: Cálculo, interpretación y limitaciones
Las encuestas son posiblemente la mejor herramienta que existe para obtener información sobre las opiniones, preocupaciones y características de la población. Evitando tener que preguntar a toda la población sobre los diferentes temas de interés, lo que no es práctico. Por eso, son ampliamente utilizadas en investigaciones de mercado, estudios de opinión pública y elecciones, … [Leer más...] acerca de Entendiendo el margen de error de las encuestas: Cálculo, interpretación y limitaciones
Aprendizaje Semisupervisado
En el campo del Aprendizaje Automático (Machine Learning) los enfoques de aprendizaje se suelen dividir en tres: aprendizaje supervisado, aprendizaje no supervisado y aprendizaje por refuerzo. Siendo los dos primeros los más utilizados. En el aprendizaje supervisado se usan conjuntos de datos etiquetados para entrenar modelos que buscan identificar estas etiquetas. Mientras que … [Leer más...] acerca de Aprendizaje Semisupervisado