Durante el verano de 2020 se ha publicado una serie de entradas temáticas sobre el lenguaje de programación Julia. Una serie que puede usarse como un curso de introducción a Julia. Un lenguaje moderno para análisis de datos y aprendizaje automático que se caracteriza por ser más rápido que Python, R o Matlab.
La serie consta de las siguientes 20 entradas:
Para la serie se ha utilizado Julia 1.4.2, la ultima versión disponible en el momento de publicación de la entrada.
Julia es un lenguaje de programación dinámico de alto nivel y rendimiento. Aunque es un lenguaje de programación de propósito general, por lo que se puede utilizar para escribir cualquier aplicación, la mayoría de sus características se han diseñado pensando especialmente en análisis numérico, el tratamiento de datos y el aprendizaje automático. Por lo que lo convierten en una alternativa a los utilizados actualmente en esas áreas como Python o R.
Julia es un lenguaje de programación dinámico con un sistema de tipos con polimorfismo paramétrico. Con el que se puede realizar computación paralela y distribuida concurrente. Además de poder realizar llamadas directas de las bibliotecas C y Fortran sin código, con lo que es posible reutilizar el código existente. Julia usa un compilador just-in-time (JIT), traduciendo los programas a código máquina antes de ejecutarlo. Lo que hace que sea más rápido que los lenguajes interpretados.
En ciencia de datos y estadística, los promedios y porcentajes son herramientas fundamentales para resumir…
Las bases de datos son el corazón de casi cualquier sistema de información moderno. Ya…
En ciencia de datos, pocas cosas llaman más la atención de los científicos de datos…
Calcular adecuadamente el tamaño de la muestra es una parte esencial en el diseño de…
Hoy en día, cuando pensamos en ciencia de datos, lo primero que nos viene a…
Ampliar el espacio de almacenamiento en un sistema Linux es una tarea habitual y crítica…
This website uses cookies.