Julia

Archivos Parquet en Julia

En una publicación reciente se ha visto las ventajas que ofrece el uso de archivos Parquet frente a CSV o Feather en Pandas. Consiguiendo guardar un conjunto de datos aleatorios en un archivo un 10% más pequeño que CSV con compresión hasta 100 veces más rápido. Algo que, en algunos puntos, mejora el rendimiento de Feather. Veamos como se puede trabajar con archivos Parquet en Julia.

Instalación del paquete Parquet.jl

Antes de poder trabajar con archivos Parquet en Julia es necesario instalar el paquete Parquet.jl. Para esto se usará el método estándar de instalación de Julia, esto es, importar Pkg y llamar al método add() de este con el nombre del paquete a instalar. Lo que se puede hacer en las siguientes líneas de código

julia> using Pkg

julia> Pkg.add("Parquet")

Proceso que descargará e instalará tanto el paquete como todas sus dependencias necesarias en nuestro sistema.

Importación de archivos Parquet en Julia

Ahora, una vez instalado el paquete en nuestro sistema, ya es posible trabajar con archivos en formato Parquet con Julia. Para lo que deberemos instanciar el paquete tanto Parquet como DataFrames. Una vez hecho esto se puede llamar a la función read_parquet() con la ruta al archivo y pasar la salida a DataFrame.

julia> using Parquet, DataFrames

julia> df = DataFrame(read_parquet("data.parquet"))

Consiguiendo de esta manera que el contenido del archivo en el objeto df.

Exportación de archivos Parquet en Julia

Por otro lado, para guardar el contenido de un DataFrame en un archivo con formato Parquet es necesario recurrir a la función write_parquet() cuya primer parámetro es la ruta al archivo y el segundo el DataFrame.

julia> write_parquet("julia.parquet", df)

Al igual que sucede en Python, por defecto el archivo se guarda con la compresión snappy, siendo necesario indicar el formato si se desea otro. PAra lo que se tiene que utilizar la propiedad compression_codec:

julia> write_parquet("julia.parquet.gzip", df, compression_codec = "GZIP")

Conclusiones

En esta entrada se ha visto como se puede trabajar con archivos Parquet en Julia, un formato de archivo que tiene muchas ventajas cuando se trabaja con grandes conjuntos de datos. Ventajas que se discutieron en una entrada anterior.

Imagen de PIRO4D en Pixabay

¿Te ha parecido de utilidad el contenido?

Daniel Rodríguez

Share
Published by
Daniel Rodríguez

Recent Posts

Data Lake y Data Warehouse: diferencias, usos y cómo se complementan en la era del dato

En la era del dato, las organizaciones se enfrentan al reto de gestionar volúmenes masivos…

2 días ago

Documentar tu API de Express con TypeScript usando OpenAPI (Swagger)

En la serie Creación de una API REST con Express y TypeScript construimos una API…

4 días ago

Curiosidad: El sesgo de supervivencia, o por qué prestar atención sólo a los que “llegaron” puede engañarte

Durante la Segunda Guerra Mundial, la Fuerza Aérea de Estados Unidos quería reforzar sus aviones…

1 semana ago

Cómo abrir una ventana de Chrome con tamaño y posición específicos desde la línea de comandos en Windows

En muchas situaciones —ya sea para grabar un tutorial, tomar capturas de pantalla profesionales, probar…

2 semanas ago

La Paradoja del Cumpleaños, o por qué no es tan raro compartir fecha de nacimiento

Imagínate en una sala con un grupo de personas, por ejemplo, en una oficina, un…

2 semanas ago

Programador de tareas de Windows: Guía definitiva para automatizar tu trabajo (BAT, PowerShell y Python)

En el trabajo diario con ordenadores, es común encontrarse con tareas repetitivas: realizar copias de…

3 semanas ago

This website uses cookies.