Python

Manipulación básica de series temporales con pandas

Pandas es una biblioteca para la manipulación y el análisis de datos en el lenguaje de programación Python. Siendo una de las librerías mas utilizadas por los científicos de datos que trabajan con este lenguaje. Entre sus capacidades se encuentra el manejo de objetos DataFrame para la manipulación de tablas, la capacidad de importación y exportación los datos en múltiples formatos y el manejo de series temporales. Conocer las posibilidades para el procesado de series temporales con pandas ofrece la posibilidad de realizar muchas operaciones básicas que son muy habituales cuando se trabaja con este tipo de datos.

Creación de un rango de fechas

La manipulación de series temporales con pandas requiere que en primer lugar se importen los datos. En esta entrada se va a trabajar con un conjunto de datos aleatorio. En condiciones reales los datos se pueden importar empleado las herramientas que provee pandas para trabajar con diferentes tipos de archivos, como son los CSV o Excel.

En primer lugar, se ha de crear un rango de fechas para la serie temporal. Esto se puede conseguir mediante el método date_range de pandas. El rango de fechas requiere que se le indique la fecha de inicio, la fecha final y el número de periodos, la fecha de inicio, la fecha final y la frecuencia o el número de periodos, la frecuencia y alguna de las dos fechas. En el siguiente ejemplo se crear una serie desde el 1 de julio del 2018 al 15 de julio con una frecuencia de horas y se muestra el resultado.

import pandas as pd
from datetime import datetime
import numpy as np

date_rng = pd.date_range(start='2018/07/01', end='2018/07/15', freq='H')
date_rng
DatetimeIndex(['2018-07-01 00:00:00', '2018-07-01 01:00:00',
               '2018-07-01 02:00:00', '2018-07-01 03:00:00',
               '2018-07-01 04:00:00', '2018-07-01 05:00:00',
               '2018-07-01 06:00:00', '2018-07-01 07:00:00',
               '2018-07-01 08:00:00', '2018-07-01 09:00:00',
               ...
               '2018-07-14 15:00:00', '2018-07-14 16:00:00',
               '2018-07-14 17:00:00', '2018-07-14 18:00:00',
               '2018-07-14 19:00:00', '2018-07-14 20:00:00',
               '2018-07-14 21:00:00', '2018-07-14 22:00:00',
               '2018-07-14 23:00:00', '2018-07-15 00:00:00'],
              dtype='datetime64[ns]', length=337, freq='H')

Creación de series temporales con pandas

A partir del rango de fechas se puede crear una DataFrame con valores. Para esto se puede utilizar la función randint con la que se pueden conseguir número aleatorios en un rango. A continuación, se muestra un código con un ejemplo y los cinco primeros registros obtenidos.

ts = pd.DataFrame(date_rng, columns=['date'])
ts['data'] = np.random.randint(0,100,size=(len(date_rng)))
ts.head(5)

Si se desea realizar la manipulación de una serie temporal se ha de utilizar la fecha como índice del DataFrame. Modificar el índice del DataFrame es realmente sencillo, para lo que se puede utilizar el siguiente código:

ts = ts.set_index('date')
ts.head(5)

Funciones básicas para la manipulación básica de series temporales con pandas

Una de las primeras operaciones que se puede realizar con la serie temporal el seleccionar un periodo de tiempo. En caso de que se necesiten los registros de un día simplemente se ha de indicar la fecha y, en el ejemplo, se obtendrá los 24 registros. Por ejemplo, los datos del día 5 julio de 2018 se obtendrían con la línea:

ts['2018/07/05']

Para conseguir un perdido de tiempo simplemente se ha de indicar la fecha inicial y final separada por dos puntos. Por ejemplo, los dato entre el 5 y el 7 de julio de 2018 se pueden obtener mediante el código:

ts['2018/07/05':'2018/07/07']

Finalmente, si se indica solamente el año o el mes se obtendrían todos los registros de ese periodo. Por ejemplo, todos los datos de julio de 2018:

ts['2018/07']

Remuestreo de las series temporales

Los datos que se han utilizado hasta ahora tienen una frecuencia horaria. En el caso de que se desee los datos con otra frecuencia estos se pueden remuestrear. Esto se consigue con el método resample, al que se le ha de indicar el periodo y a su resultado se le puede aplicar una operación. Por ejemplo, la media semanal se puede obtener mediante el código:

ts.resample('W').mean()

Ventana móvil

Las estadísticas se pueden obtener también mediante una ventana móvil. Para ello se ha de utilizar el método rolling al que se le ha de indicar el número de periodos. La media móvil de tres periodos se puede calcular con:

ts['MA'] = ts.rolling(3).mean()
ts.head(5)


El resultado muestra tres valores nulos, estos se pueden completar con el método fillna.

ts['MA'] = ts['MA'].fillna(method='backfill')
ts.head(5)

Conclusiones

En esta entrada se ha visto las herramientas básicas que provee pandas para trabajar con series temporales. A pesar de su sencillez estas herramientas permiten realizar una gran cantidad de trabajo con este tipo de datos.

¿Te ha parecido de utilidad el contenido?

Daniel Rodríguez

Share
Published by
Daniel Rodríguez

Recent Posts

Data Lake y Data Warehouse: diferencias, usos y cómo se complementan en la era del dato

En la era del dato, las organizaciones se enfrentan al reto de gestionar volúmenes masivos…

2 días ago

Documentar tu API de Express con TypeScript usando OpenAPI (Swagger)

En la serie Creación de una API REST con Express y TypeScript construimos una API…

4 días ago

Curiosidad: El sesgo de supervivencia, o por qué prestar atención sólo a los que “llegaron” puede engañarte

Durante la Segunda Guerra Mundial, la Fuerza Aérea de Estados Unidos quería reforzar sus aviones…

1 semana ago

Cómo abrir una ventana de Chrome con tamaño y posición específicos desde la línea de comandos en Windows

En muchas situaciones —ya sea para grabar un tutorial, tomar capturas de pantalla profesionales, probar…

2 semanas ago

La Paradoja del Cumpleaños, o por qué no es tan raro compartir fecha de nacimiento

Imagínate en una sala con un grupo de personas, por ejemplo, en una oficina, un…

2 semanas ago

Programador de tareas de Windows: Guía definitiva para automatizar tu trabajo (BAT, PowerShell y Python)

En el trabajo diario con ordenadores, es común encontrarse con tareas repetitivas: realizar copias de…

3 semanas ago

This website uses cookies.