• Ir al contenido principal
  • Skip to secondary menu
  • Ir a la barra lateral primaria
  • Ir al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Noticias
    • Opinión
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Boletín
  • Contacto
  • Acerca de Analytics Lane
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • GearBest
      • GeekBuying
      • JoyBuy

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Criptografía
  • Python
  • Matlab
  • R
  • Julia
  • JavaScript
  • Herramientas
  • Opinión
  • Noticias

Manipulación básica de series temporales con pandas

agosto 15, 2018 Por Daniel Rodríguez Dejar un comentario

Pandas es una biblioteca para la manipulación y el análisis de datos en el lenguaje de programación Python. Siendo una de las librerías mas utilizadas por los científicos de datos que trabajan con este lenguaje. Entre sus capacidades se encuentra el manejo de objetos DataFrame para la manipulación de tablas, la capacidad de importación y exportación los datos en múltiples formatos y el manejo de series temporales. Conocer las posibilidades para el procesado de series temporales con pandas ofrece la posibilidad de realizar muchas operaciones básicas que son muy habituales cuando se trabaja con este tipo de datos.

Creación de un rango de fechas

La manipulación de series temporales con pandas requiere que en primer lugar se importen los datos. En esta entrada se va a trabajar con un conjunto de datos aleatorio. En condiciones reales los datos se pueden importar empleado las herramientas que provee pandas para trabajar con diferentes tipos de archivos, como son los CSV o Excel.

En primer lugar, se ha de crear un rango de fechas para la serie temporal. Esto se puede conseguir mediante el método date_range de pandas. El rango de fechas requiere que se le indique la fecha de inicio, la fecha final y el número de periodos, la fecha de inicio, la fecha final y la frecuencia o el número de periodos, la frecuencia y alguna de las dos fechas. En el siguiente ejemplo se crear una serie desde el 1 de julio del 2018 al 15 de julio con una frecuencia de horas y se muestra el resultado.

import pandas as pd
from datetime import datetime
import numpy as np

date_rng = pd.date_range(start='2018/07/01', end='2018/07/15', freq='H')
date_rng
DatetimeIndex(['2018-07-01 00:00:00', '2018-07-01 01:00:00',
               '2018-07-01 02:00:00', '2018-07-01 03:00:00',
               '2018-07-01 04:00:00', '2018-07-01 05:00:00',
               '2018-07-01 06:00:00', '2018-07-01 07:00:00',
               '2018-07-01 08:00:00', '2018-07-01 09:00:00',
               ...
               '2018-07-14 15:00:00', '2018-07-14 16:00:00',
               '2018-07-14 17:00:00', '2018-07-14 18:00:00',
               '2018-07-14 19:00:00', '2018-07-14 20:00:00',
               '2018-07-14 21:00:00', '2018-07-14 22:00:00',
               '2018-07-14 23:00:00', '2018-07-15 00:00:00'],
              dtype='datetime64[ns]', length=337, freq='H')

Creación de series temporales con pandas

A partir del rango de fechas se puede crear una DataFrame con valores. Para esto se puede utilizar la función randint con la que se pueden conseguir número aleatorios en un rango. A continuación, se muestra un código con un ejemplo y los cinco primeros registros obtenidos.

ts = pd.DataFrame(date_rng, columns=['date'])
ts['data'] = np.random.randint(0,100,size=(len(date_rng)))
ts.head(5)
DataFrame con fechas en pandas

Si se desea realizar la manipulación de una serie temporal se ha de utilizar la fecha como índice del DataFrame. Modificar el índice del DataFrame es realmente sencillo, para lo que se puede utilizar el siguiente código:

ts = ts.set_index('date')
ts.head(5)
Series temporales con pandas

Funciones básicas para la manipulación básica de series temporales con pandas

Una de las primeras operaciones que se puede realizar con la serie temporal el seleccionar un periodo de tiempo. En caso de que se necesiten los registros de un día simplemente se ha de indicar la fecha y, en el ejemplo, se obtendrá los 24 registros. Por ejemplo, los datos del día 5 julio de 2018 se obtendrían con la línea:

ts['2018/07/05']

Para conseguir un perdido de tiempo simplemente se ha de indicar la fecha inicial y final separada por dos puntos. Por ejemplo, los dato entre el 5 y el 7 de julio de 2018 se pueden obtener mediante el código:

ts['2018/07/05':'2018/07/07']

Finalmente, si se indica solamente el año o el mes se obtendrían todos los registros de ese periodo. Por ejemplo, todos los datos de julio de 2018:

ts['2018/07']

Remuestreo de las series temporales

Los datos que se han utilizado hasta ahora tienen una frecuencia horaria. En el caso de que se desee los datos con otra frecuencia estos se pueden remuestrear. Esto se consigue con el método resample, al que se le ha de indicar el periodo y a su resultado se le puede aplicar una operación. Por ejemplo, la media semanal se puede obtener mediante el código:

ts.resample('W').mean()
Agrupación por semanas de series temporales con pandas

Ventana móvil

Las estadísticas se pueden obtener también mediante una ventana móvil. Para ello se ha de utilizar el método rolling al que se le ha de indicar el número de periodos. La media móvil de tres periodos se puede calcular con:

ts['MA'] = ts.rolling(3).mean()
ts.head(5)
Remuestreo de series temporales con pandas


El resultado muestra tres valores nulos, estos se pueden completar con el método fillna.

ts['MA'] = ts['MA'].fillna(method='backfill')
ts.head(5)
Resmuestreo de series temporales con relleno de nulos

Conclusiones

En esta entrada se ha visto las herramientas básicas que provee pandas para trabajar con series temporales. A pesar de su sencillez estas herramientas permiten realizar una gran cantidad de trabajo con este tipo de datos.

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Contenido relacionado

Archivado en:Python Etiquetado con:pandas, series temporales

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad


Barra lateral primaria

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

¡Síguenos en redes sociales!

  • facebook
  • github
  • telegram
  • pinterest
  • rss
  • tumblr
  • twitter
  • youtube

Publicidad

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Entradas recientes

Usar dispositivos USB en VirtualBox

enero 15, 2021 Por Daniel Rodríguez Dejar un comentario

Eliminar elementos en matrices de Matlab

enero 13, 2021 Por Daniel Rodríguez Dejar un comentario

NumPy

NumPy: Crear matrices vacías en NumPy y adjuntar filas o columnas

enero 11, 2021 Por Daniel Rodríguez Dejar un comentario

Publicidad

Es tendencia

  • Seleccionar filas y columnas en Pandas con iloc y loc bajo Python
  • Excel en Python Guardar y leer archivos Excel en Python bajo Python
  • ¿Cómo eliminar columnas y filas en un dataframe pandas? bajo Python
  • Codificación JSON Archivos JSON con Python: lectura y escritura bajo Python
  • Numpy básico: como añadir elementos en arrays de Numpy con np.append() bajo Python

Publicidad

Lo mejor valorado

5 (3)

Ordenar una matriz en Matlab en base a una fila o columna

5 (3)

Automatizar el análisis de datos con Pandas-Profiling

5 (5)

Diferencias entre var y let en JavaScript

5 (6)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

5 (3)

Unir y combinar dataframes con pandas en Python

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Calculadora de probabilidades de ganar a la lotería
  • abel en Calculadora de probabilidades de ganar a la lotería
  • David Arias en Diferencias entre regresión y clasificación en aprendizaje automático
  • Juan Aguilar en Archivos JSON con Python: lectura y escritura
  • Camilo en Contar palabras en una celda Excel

Publicidad

Footer

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Noticias
  • Opinión

Programación

  • JavaScript
  • Julia
  • Matlab
  • Python
  • R

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Lo más popular
  • Tienda

Tiendas Afiliadas

  • AliExpress
  • Amazon
  • BangGood
  • GearBest
  • Geekbuying
  • JoyBuy

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Amazon

2018-2020 Analytics Lane · Términos y condiciones · Política de Cookies · Política de Privacidad · Herramientas de privacidad · Contacto