• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • IA Generativa
  • Python
  • Pandas
  • NumPy
  • Excel
  • Matlab

Inclusión de valores y variables en las f-strings de Python

marzo 18, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 3 minutos

Las f-strings, o formatted string literals, son una característica introducida en Python 3.6 con la que se simplifica la tarea de dar formato a las cadenas de texto. Facilitando interpolar variables y expresiones dentro de las cadenas de texto. Sin embargo, ¿sabías que las f-strings tienen una función especial que permite incluir tanto el nombre de la variable como su valor en la cadena resultante? En esta entrada se explicará cómo con esta característica particular se puede incluir tanto los valores como las variables en las f-strings de Python.

Uso del signo igual (=) para la inclusión de valores y variables en las f-strings de Python

La funcionalidad de las f-strings que se va a analizar es bastante simple al mismo tiempo que de gran utilidad. Al agregar el signo igual (=) después de una variable dentro de una f-string no solo se incluye el valor de la variable, sino que además se incluye el nombre de esta en la cadena resultante. Veamos un ejemplo básico, simplemente se puede imprimir el nombre que contiene una variable como se hace normalmente y con el signo igual después de la variable.

nombre = "Alice"

print(f'El nombre es {nombre}')
print(f'El nombre es {nombre=}')
El nombre es Alice
El nombre es nombre='Alice'

En el ejemplo se puede ver que al introducir el signo igual después de la variable no solo aparece el contenido, sino que también el nombre de la variable. Cambiando la cadena de texto resultante.

Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo
En Analytics Lane
Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo

Publicidad


Uso en expresiones aritméticas

Un caso de uso que puede ser bastante interesante de esta funcionalidad se da cuando se realizan operaciones aritméticas dentro de las f-strings. Al usar el signo igual no solo se puede mostrar el resultado, sino que también la propia operación. Esto es lo que se muestra en el siguiente ejemplo.

x = 5
y = 7

print(f'La suma de {x=} y {y=} es {x + y=}')
La suma de x=5 y y=7 es x + y=12

Como se puede ver en el ejemplo, la cadena de texto resultante contiene tanto la operación que se ha realizado como el propio resultado de esta. Haciendo explícito para el usuario la operación.

Inclusión de funciones en las f-strings

En las f-strings no solo se pueden incluir operaciones, sino que también funciones. Por ejemplo, se puede usar para ver la longitud de una cadena de texto de una forma sencilla.

mensaje = "Hola mundo"

print(f'{mensaje=} con {len(mensaje)=} caracteres')
mensaje='Hola mundo' con len(mensaje)=10 caracteres

Al igual que en el caso de las expresiones aritméticas, la cadena de texto resultante en este ejemplo también hace explícito la operación con la que se obtiene el resultado indicado.

Publicidad


Conclusiones

Esta característica de las f-strings puede ser extremadamente útil para la depuración de código. Situación en la que es necesario conocer tanto el nombre como el valor de la variable durante la ejecución del programa. Agregar un signo igual después de la variable que se interpola no solo mostrará el valor, sino que también el nombre de esta. Otro caso en que esta característica puede ser de gran utilidad es para la generación de mensajes de registro detallados.

Utilizando esta funcionalidad de las f-strings de Python se puede facilitar la claridad y expresividad del código, haciendo más sencillos los procesos de desarrollo y depuración.

Imagen de Pexels en Pixabay

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 5 / 5. Votos emitidos: 1

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicaciones relacionadas

  • Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo
  • ¿Está concentrado el MSCI World? Un análisis con Gini, Lorenz y leyes de potencia
  • Curiosidad: ¿Por qué usamos p < 0.05? Un umbral que cambió la historia de la ciencia
  • Programador de tareas de Windows: Guía definitiva para automatizar tu trabajo (BAT, PowerShell y Python)
  • La Paradoja del Cumpleaños, o por qué no es tan raro compartir fecha de nacimiento
  • Cómo abrir una ventana de Chrome con tamaño y posición específicos desde la línea de comandos en Windows
  • Curiosidad: El sesgo de supervivencia, o por qué prestar atención sólo a los que “llegaron” puede engañarte
  • Documentar tu API de Express con TypeScript usando OpenAPI (Swagger)
  • Data Lake y Data Warehouse: diferencias, usos y cómo se complementan en la era del dato

Publicado en: Python

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Data Lake y Data Warehouse: diferencias, usos y cómo se complementan en la era del dato

octubre 23, 2025 Por Daniel Rodríguez

Documentar tu API de Express con TypeScript usando OpenAPI (Swagger)

octubre 21, 2025 Por Daniel Rodríguez

Curiosidad: El sesgo de supervivencia, o por qué prestar atención sólo a los que “llegaron” puede engañarte

octubre 16, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Aplicación web interactiva que muestra un mapa de Madrid con puntos de interés destacados, creado utilizando la biblioteca Folium. Tutorial: Creando un mapa interactivo con Folium en Python publicado el diciembre 13, 2024 | en Python
  • Cómo calcular el tamaño de la muestra para encuestas publicado el septiembre 9, 2025 | en Ciencia de datos
  • Entendiendo la validación cruzada: Selección de la profundidad óptima en un árbol de decisión publicado el septiembre 13, 2024 | en Ciencia de datos
  • Concatenar listas en Python publicado el agosto 19, 2019 | en Python
  • Hoja de cálculo para repartir los escaños en base al método D’Hont Aplicar el método D’Hondt en Excel publicado el abril 14, 2021 | en Herramientas

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto