• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • IA Generativa
  • Python
  • Pandas
  • NumPy
  • Excel
  • Matlab

Unir y combinar dataframes con pandas en Python

septiembre 10, 2018 Por Daniel Rodríguez 2 comentarios
Tiempo de lectura: 4 minutos

En muchas ocasiones nos podemos encontrar con que los conjuntos de datos no se encuentran agregados en una única tabla. Por ejemplo, los datos personales de los clientes y las transacciones estos han realizado. En estas situaciones la consolidación de los datos se puede realizar tengo una base de datos con SQL. Pero esto no es necesario, la consolidación también se puede realizar directamente en pandas. En esta entrada se explicará cómo unir y combinar dataframes con pandas.

Creación de un conjunto de datos de ejemplo

En primer lugar, antes de explicar los métodos para combinar data frames se ha de crear el conjunto de datos ejemplo. Esto se puede realizar escribiendo directamente los datos. Un dataframe con los datos personales que los clientes se pueden generar con el siguiente código.

import pandas as pd

clients = {'first_name' : ['Oralie' ,'Imojean' ,'Michele', 'Ailbert', 'Stevy'],
           'last_name' : ['Fidgeon' ,'Benet' ,'Woodlands', 'Risdale', 'MacGorman'],
           'age' : [30 ,21 ,29 ,22, 24]}

clients = pd.DataFrame(clients, columns = ['first_name', 'last_name', 'age'])
clients
Datos clientes

Por otro lado, las transacciones se pueden generar mediante el siguiente conjunto de instrucciones.

invoices = {'invoice_id': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
            'client_id' : [3, 2, 7, 2, 7, 3, 1, 4 ,2, 3, 6, 2],
            'amount': [77.91, 24.36, 74.65, 19.75, 27.46, 17.13, 45.77, 81.7, 14.41, 52.69, 32.03, 12.78]}

invoices = pd.DataFrame(invoices, columns = ['invoice_id', 'client_id', 'amount'])
invoices
Datos transacciones

A continuación, se van a utilizar estos dos conjuntos de datos para enseñar a combinar objetos dataframe en pandas.

Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo
En Analytics Lane
Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo

Publicidad


Concatenar nuevos registros

Al revisar el conjunto de datos de clientes nos podemos dar cuenta de la falta de uno. Para solucionar este problema simplemente se ha de agregar el registro, para los que se puede utilizar el método concat de pandas. El uso es tremendamente sencillo, simplemente se ha de indicar los datos a concatenar. Esto es lo que se muestra el siguiente ejemplo.

new_clients = pd.DataFrame({'first_name' : ['Rebe'],
                            'last_name' : ['MacCrossan'],
                            'age' : [21]},
                           columns = ['first_name', 'last_name', 'age'])

clients = pd.concat([clients, new_clients])
clients
Datos clientes modificados

Puede apreciarse que se conserva los índices originales. Eso puede ser un problema que se puede solucionar actualizando los valores tal como se muestra a continuación.

clients.index = range(clients.shape[0])

Una vez solucionado este problema se puede apreciar que no se dispone del identificador de los clientes. Esto también se puede solucionar mediante el método concat. Aunque en esta ocasión, al ser necesario concatenar los valores horizontalmente, se ha de indicar el eje con la opción axis. Esto es lo que se muestra el siguiente código.

ids = pd.DataFrame({'client_id': [1, 2, 3, 4, 5, 6]}, columns = ['client_id'])
clients = pd.concat([ids, clients], axis=1,)
clients
Clientes con id

Unión de los dataframes

Después de haber completado la tabla con los datos de los clientes se puede unir esta con la de las transacciones. Para esto se puede utilizar el método merge de pandas. A este método se le ha de indicar las dos variables y la columna utilizará para la unión. El ejemplo eso se realiza mediante la columna client_id. La unión de las dos tablas se puede realizar con la siguiente línea.

pd.merge(clients, invoices, on='client_id')

Cuando el nombre del identificador utilizado para unir las tablas no es el mismo las dos se puede indicar ambos. La forma de realizar esto se muestra a continuación.

pd.merge(clients, invoices, left_on='client_id', right_on='client_id')

Utilizando las opciones por defecto se combinan los registros que están tanto en la lista de clientes, La lista de transacciones. Se puede apreciar que clientes sin transacción Y transacciones en cliente. El tipo de unión utilizada se puede indicar utilizando el parámetro how, existiendo cuatro formas de realizar esta: inner, outer, left y right. El valor por defecto es inner. Para obtener todos los registros se ha de utilizar la opción outer.

pd.merge(clients, invoices, on='client_id', how='outer')

Finalmente si en los data frames existen columnas con el mismo nombre se puede indicar un sufijo para identificar el origen de cada una. De esta manera se puede identificar el origen de cada una de ellas.

pd.merge(clients, clients, on='client_id', suffixes=('_1', '_2'))
Inclusión de sufijos

Publicidad


Conclusiones

En esta entrada se han visto los métodos disponibles en pandas para unir y concatenar dataframes. Estos métodos son muy útiles para procesar los datos si la necesidad de recurrir a herramientas externas.

Imágenes: Pixabay

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 4.9 / 5. Votos emitidos: 7

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicaciones relacionadas

  • Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo
  • ¿Está concentrado el MSCI World? Un análisis con Gini, Lorenz y leyes de potencia
  • Curiosidad: ¿Por qué usamos p < 0.05? Un umbral que cambió la historia de la ciencia
  • Programador de tareas de Windows: Guía definitiva para automatizar tu trabajo (BAT, PowerShell y Python)
  • La Paradoja del Cumpleaños, o por qué no es tan raro compartir fecha de nacimiento
  • Cómo abrir una ventana de Chrome con tamaño y posición específicos desde la línea de comandos en Windows
  • Curiosidad: El sesgo de supervivencia, o por qué prestar atención sólo a los que “llegaron” puede engañarte
  • Documentar tu API de Express con TypeScript usando OpenAPI (Swagger)
  • Data Lake y Data Warehouse: diferencias, usos y cómo se complementan en la era del dato

Publicado en: Python Etiquetado como: Pandas

Interacciones con los lectores

Comentarios

  1. reynaldo lopez dice

    septiembre 5, 2020 a las 5:25 am

    Excelente ejemplo, gracias por compartirlo. tienes ejemplo para agrupar groupby ?

    Responder
    • Daniel Rodríguez dice

      septiembre 5, 2020 a las 10:01 am

      Actualmente algunas existen entradas publicadas en las que se usa gropuBy a nivel de ejemplo, pero no hablo específicamente del método en sí. Por ejemplo, puedes consultar:

      • Agrupación de datos por fecha en pandas
      • Máximos de un subconjunto en un dataframe pandas
      Responder

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Data Lake y Data Warehouse: diferencias, usos y cómo se complementan en la era del dato

octubre 23, 2025 Por Daniel Rodríguez

Documentar tu API de Express con TypeScript usando OpenAPI (Swagger)

octubre 21, 2025 Por Daniel Rodríguez

Curiosidad: El sesgo de supervivencia, o por qué prestar atención sólo a los que “llegaron” puede engañarte

octubre 16, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Obtención de valores únicos de una columna con Pandas publicado el mayo 8, 2019 | en Python
  • Función de interpolación lineal en Excel sin VBA publicado el noviembre 3, 2021 | en Herramientas
  • Creación de gráficos de barras y gráficos de columnas con Seaborn publicado el julio 18, 2023 | en Python
  • pandas Pandas: Cómo convertir listas en DataFrames publicado el noviembre 9, 2020 | en Python
  • El índice de Davies-Bouldinen para estimar los clústeres en k-means e implementación en Python publicado el junio 30, 2023 | en Ciencia de datos

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto