• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • Excel
  • IA Generativa

Importar archivos Apache Arrow o Feather en Julia

octubre 27, 2021 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 2 minutos

Recientemente hemos visto las ventajas que ofrece el uso del formato de archivo Feather frente a CSV en Python. En primer lugar, el tamaño de los archivos resultantes es mucho más pequeño, en torno a un tercio. Además, el tiempo necesario para guardar y cargar los datos es varios órdenes de magnitud, lo que significa pasar de segundos a décimas de segundos. Siendo ambos aspectos importantes a la hora de trabajar con grandes conjuntos de datos. Hoy vamos a ver los pasos necesarios para trabajar con archivos Feather en Julia.

Diferencia entre Arrow y Feather

Entre los paquetes de Julia nos podemos encontrar con un paquete llamado Feather.jl el cual solo puede trabajar con la primera versión del formato (Feather v1). Una versión que ahora se encuentra en desuso. La segunda versión (Feather v2), la que usa Pandas por defecto, es simplemente el formato Apache Arrow volcado a disco. Para trabajar con este formato se debe usar el paquete Arrow.jl.

En esta entrada nos vamos a centrar únicamente en el formato Apache Arrow (Feather v2) ya que es el recomendado actualmente. El paquete Feather.jl solamente se debería usar para importar ficheros antiguos que tengamos en el formato antiguo.

Por defecto, el método to_feather() de Pandas usa el formato Apache Arrow, aunque en es compatible con formato antiguo. Siendo esto algo que puede llevar a confusión para los usuarios de Pandas.

¡Nuevo video! Aprende a seleccionar datos en Pandas con .iloc y .loc
En Analytics Lane
¡Nuevo video! Aprende a seleccionar datos en Pandas con .iloc y .loc

Publicidad


Instalación del paquete Arrow.jl

Antes de poder trabajar con archivos Apache Arrow en Julia es necesario instalar el paquete Arrow.jl. Usado para ello el método estándar de instalación, esto es, escribiendo los siguientes comandos

julia> using Pkg

julia> Pkg.add("Arrow")

Proceso que descargará e instalará tanto el paquete como todas sus dependencias en nuestro sistema.

Importación de los archivos Apache Arrow o Feather en Julia

Una vez instalado el paquete ya se pueden importar los datos desde los archivos Arrow o Feather en Julia. Para ello se tiene que importar el paquete y usar el siguiente la instrucción Arrow.Table() pasando como único parámetro un objeto de tipo io::IO o file::String, tal como se muestra a continuación

julia> using Arrow

julia> table = Arrow.Table("data.feather")

El resultado es un objeto de tipo Arrow.Table. En el caso de que deseemos trabajar con un objeto DataFrame solamente hay que convertirlo con DataFrame

julia> using DataFrames

julia> df = DataFrame(table)

Publicidad


Exportar archivos Apache Arrow o Feather en Julia

Para guardar un conjunto de datos en un archivo Apache Arrow se puede utilizar el método Arrow.write() pasando como primer parámetro el nombre del archivo y como segundo un objeto compatible (pudiendo ser tanto de tipo Arrow.Table como DataFrame)

julia> Arrow.write("data.arrow", df)

Generando de este modo un archivo data.arrow que puede ser importado en Python mediante el método pd.read_feather().

Conclusiones

En esta entrada hemos visto los pasos necesarios para importar archivos Apache Arrow o Feather en Julia. Además de comprender la relación que existe entre los formatos Apache Arrow y Feather.

Imagen de Paul Barlow en Pixabay

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicidad


Publicaciones relacionadas

  • ¡Nuevo video! Aprende a seleccionar datos en Pandas con .iloc y .loc
  • ¡Nuevo video! Aprende a eliminar filas y columnas en Pandas sin errores
  • Nuevo video en el canal: Cómo eliminar duplicados de una lista en Python
  • Nuevo video en YouTube: Trabajando con archivos JSON en Python
  • Nuevo video: Leer y guardar archivos Excel y CSV en Python
  • Nuevo video: cómo activar copiar y pegar en VirtualBox fácilmente
  • Cómo extender el tamaño de un disco en Rocky Linux 9 usando growpart y LVM
  • Curiosidad: El origen del análisis exploratorio de datos y el papel de John Tukey
  • Cómo calcular el tamaño de la muestra para encuestas

Publicado en: Julia Etiquetado como: Apache Arrow

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Cómo calcular el tamaño de la muestra para encuestas

septiembre 9, 2025 Por Daniel Rodríguez

Curiosidad: El origen del análisis exploratorio de datos y el papel de John Tukey

septiembre 4, 2025 Por Daniel Rodríguez

Cómo extender el tamaño de un disco en Rocky Linux 9 usando growpart y LVM

septiembre 2, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • NumPy NumPy: Concatenar matrices en NumPy con np.concatenate() publicado el agosto 17, 2021 | en Python
  • Gráficos de barras en Matplotlib publicado el julio 5, 2022 | en Python
  • Los tipos de aprendizaje por conjuntos (Ensemble Learning) publicado el enero 28, 2022 | en Ciencia de datos
  • ¿Cómo saber la versión de Pandas o cualquier otra librería en Python? publicado el septiembre 25, 2023 | en Python
  • Seleccionar filas y columnas en Pandas con iloc y loc publicado el junio 21, 2019 | en Python

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes
  • Javier en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto