• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • IA Generativa
  • Python
  • Pandas
  • NumPy
  • R
  • Excel

Calcular el número óptimo de bins para un histograma

febrero 25, 2022 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 4 minutos

Histograma generado para el conjunto de datos con la selección automática del número de bins

Los histogramas son una herramienta fantástica para visualizar la frecuencia de los diferentes valores de un conjunto de datos. Permitiendo ver rápidamente la distribución de la población. Lo que se hace dividiendo el rango del conjunto de datos en grupos de la misma anchura, a los que se suelen denominar bins, y contar el número de valores que caen en cada uno de estos. Siendo este número de bins clave para poder ver correctamente la distribución de los datos. Usar un número demasiado bajo de bins hará que no se pueda apreciar la distribución en la figura, mientras que emplear un número demasiado alto solamente se verá ruido. Para ello saber como obtener el número óptimo de bins para un histograma es clave.

Tabla de contenidos

  • 1 El problema del número de bins en un histograma
  • 2 Reglas para calcular el número óptimo de bins para un histograma
    • 2.1 La regla de Sturges
    • 2.2 La regla de Freedman–Diaconis
    • 2.3 Selección de una regla
  • 3 Implementación en Python de las reglas
  • 4 Conclusiones

El problema del número de bins en un histograma

En primer lugar, es adecuado ver el problema que representa no usar el número adecuado de bins en un histograma. Para ello se puede crear un conjunto de datos aleatorios con una distribución normal, en la que un porcentaje de los datos se desplaza un valor dado. Lo que nos creará un conjunto de datos bimodal. Forma que se puede ver fácilmente con un histograma.

import numpy as np
from matplotlib.pyplot import hist

data = np.random.RandomState(0).randn(400)
data[300:] += 4

hist(data, bins='auto')
Histograma generado para el conjunto de datos con la selección automática del número de bins
Histograma generado para el conjunto de datos con la selección automática del número de bins

En este ejemplo se le ha indicado a la función hist() que determine automáticamente el número de bins con la opción 'auto' del parámetro bins. Seleccionando en este caso 13 que con los que se puede ver fácilmente la forma de la distribución. Ahora, si se crea un histograma solamente con 3 bins, las conclusiones que se podrían sacar de esta figura no serían correctas.

Balance de 2025 en Analytics Lane
En Analytics Lane
Balance de 2025 en Analytics Lane

Histograma generado para el conjunto de datos con 3 bins
Histograma generado para el conjunto de datos con 3 bins

Los mismo en el caso de usar demasiados bins, por ejemplo 100.

Histograma generado para el conjunto de datos con 100 bins
Histograma generado para el conjunto de datos con 100 bins

Publicidad


Reglas para calcular el número óptimo de bins para un histograma

Generalmente la función hist() de Matplotlib calcula de una forma correcta el número óptimo de bins para el conjunto de datos usado. Aunque en algunos casos puede ser necesario saber cómo calcular este. Para lo que se pueden usar, entre otras, dos reglas: Sturges y Freedman–Diaconis.

La regla de Sturges

Para la obtención de la regla de Sturges solamente se tiene que asumir que el número de muestras en cada intervalo de un histograma ideal viene dado por el coeficiente binomial. Así el número total de muestras se puede obtener sumando el de cada uno de los intervalos.

N = \sum_{i=0}^{k-1} \binom{k-1}{i} = 2^{k-1}

Por lo que se puede obtener una fórmula que depende únicamente de la cantidad de valores que existen en el conjunto de datos.

k_{Sturges} = \log_2|n| + 1

Publicidad


La regla de Freedman–Diaconis

En el caso de la regla de Freedman–Diaconis se usa un enfoque diferente al anterior. Buscando identificar el ancho de los bins de tal manera que se minimice la diferencia entre la integral de histograma y la función de distribución teórica. Para lo que se usa la siguiente expresión

width_{FD} = 2 \frac{IRQ}{\sqrt[3]{n}}

Donde IRQ representa el rango intercuartílico y n el número de valores del conjunto de datos.

Selección de una regla

En la mayoría de los casos el número de bins que se obtendrá usando las reglas anteriores será diferente. Por lo que una buena opción es calcular ambos y quedarnos con el mayor de los dos valores. Siendo esta la opción que se implementa en muchas librerías.

Publicidad


Implementación en Python de las reglas

Ahora que conocemos las dos reglas se pueden implementar en Python para comprobar que el número óptimo de bins en nuestro ejemplo es el que ha seleccionado la función hist().

def sturges(data):
    num_data = len(data)
    num_bins = np.int(np.log2(num_data)) + 1
    return num_bins


def freedman_diaconis(data):
    num_data = len(data)
    irq = np.percentile(data, 75) - np.percentile(data, 25)
    bin_width = 2 * irq / np.power(num_data, 1/3)
    num_bins = np.int((np.max(data) -  np.min(data)) / bin_width)  + 1
    return num_bins

Al usar ambas funciones se puede ver que la regla de Sturges indica que el valor óptimo es 9, mientras que la regla de Freedman–Diaconis indica 13. Siendo este último, el máximo de los dos, el que previamente había calculado la función hist().

Conclusiones

En esta ocasión se han visto dos reglas que se pueden emplear para calcular el número óptimo de bins para un histograma.

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 5 / 5. Votos emitidos: 3

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicidad


Publicaciones relacionadas

  • Balance de 2025 en Analytics Lane
  • El promedio engañoso: cuando la media no cuenta toda la historia
  • Comprender las pruebas de hipótesis para no especialistas
  • Ordenadores para Machine Learning e Inteligencia Artificial en 2026: Guía completa para elegir el equipo adecuado según tu perfil y presupuesto
  • ¿Qué significa realmente un porcentaje? Por qué no es lo mismo subir un 20% que bajar un 20%
  • null y undefined en JavaScript y TypeScript: ¿son realmente lo mismo?
  • Riesgo relativo vs riesgo absoluto: la trampa de los titulares alarmistas

Publicado en: Ciencia de datos Etiquetado como: Matplotlib

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Riesgo relativo vs riesgo absoluto: la trampa de los titulares alarmistas

enero 29, 2026 Por Daniel Rodríguez

null y undefined en JavaScript y TypeScript: ¿son realmente lo mismo?

enero 27, 2026 Por Daniel Rodríguez

¿Qué significa realmente un porcentaje? Por qué no es lo mismo subir un 20% que bajar un 20%

enero 22, 2026 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Media, mediana y moda: Descubre cómo interpretar las medidas de tendencia central con ejemplos claros y sin complicaciones publicado el mayo 16, 2025 | en Ciencia de datos
  • Obtención de valores únicos de una columna con Pandas publicado el mayo 8, 2019 | en Python
  • La pantalla del sistema operativo anfitrión no se adapta al de la pantalla en VirtualBox Configuración del tamaño de pantalla en VirtualBox publicado el noviembre 11, 2022 | en Herramientas
  • Hoja de cálculo para repartir los escaños en base al método D’Hont Aplicar el método D’Hondt en Excel publicado el abril 14, 2021 | en Herramientas
  • Correlación y causalidad: no es lo mismo publicado el junio 13, 2025 | en Ciencia de datos

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • M. Pilar en Cómo eliminar las noticias en Windows 11 y recuperar tu concentración
  • Daniel Rodríguez en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2026 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto