• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • Excel
  • IA Generativa

¡Nuevo video! Cambia tipos de datos en pandas como un experto

julio 24, 2025 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: < 1 minuto

Continuamos con la serie especial de verano en el canal de YouTube de Analytics Lane, donde repasamos algunas de las entradas más populares del blog. En esta sexta entrega nos centramos en una operación clave para quienes trabajan con datos en Python: cambiar los tipos de datos en un DataFrame.

Aunque puede parecer una tarea simple, entender cómo y cuándo modificar los tipos en pandas puede ayudarte a evitar errores, optimizar memoria y preparar mejor tus datos para análisis más complejos.

En este video de 15 minutos te explico:

  • Cómo identificar los tipos de datos actuales en tu DataFrame
  • Cuándo usar .astype() y cuándo convert_dtypes()
  • Qué hacer con columnas de fechas o categóricas
  • Y más trucos útiles que puedes aplicar de inmediato

Puedes ver el video completo aquí:

Entrada original en el blog: Pandas: Cambiar los tipos de datos en los DataFrames

Si te resulta útil, no olvides suscribirte al canal, dejar tu “me gusta” y comentar qué otros temas te gustaría que tratáramos en próximos videos.

¿Te ha parecido de utilidad el contenido?

Nuevo video en el canal: Cómo eliminar duplicados de una lista en Python
En Analytics Lane
Nuevo video en el canal: Cómo eliminar duplicados de una lista en Python

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicaciones relacionadas

  • Nuevo video en el canal: Cómo eliminar duplicados de una lista en Python
  • Nuevo video en YouTube: Trabajando con archivos JSON en Python
  • Nuevo video: Leer y guardar archivos Excel y CSV en Python
  • Nuevo video: cómo activar copiar y pegar en VirtualBox fácilmente
  • Cómo extender el tamaño de un disco en Rocky Linux 9 usando growpart y LVM
  • Curiosidad: El origen del análisis exploratorio de datos y el papel de John Tukey
  • Cómo calcular el tamaño de la muestra para encuestas
  • Curiosidad: La Ley de Twyman y la trampa de los datos “interesantes”
  • Copias de seguridad automáticas en SQL Server con rotación de archivos

Publicado en: Noticias Etiquetado como: YouTube

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Curiosidad: La Paradoja de Simpson, o por qué no siempre debes fiarte de los promedios

septiembre 18, 2025 Por Daniel Rodríguez

Copias de seguridad automáticas en SQL Server con rotación de archivos

septiembre 16, 2025 Por Daniel Rodríguez

Curiosidad: La Ley de Twyman y la trampa de los datos “interesantes”

septiembre 11, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas publicado el mayo 10, 2019 | en Python
  • Visualización de valores faltantes en el conjunto de datos planets Visualización de valores faltantes con Missingno publicado el diciembre 6, 2021 | en Python
  • Evitar que Office guarde los archivos por defecto en OneDrive publicado el noviembre 8, 2023 | en Herramientas
  • Realizar auditorías de código Python automáticamente publicado el junio 13, 2022 | en Python
  • Instalar Rocky Linux 9 en VirtualBox publicado el octubre 20, 2023 | en Herramientas

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto