• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • IA Generativa
  • Python
  • Pandas
  • NumPy
  • Excel
  • Matlab

Visualización de valores faltantes con Missingno

diciembre 6, 2021 Por Daniel Rodríguez 2 comentarios
Tiempo de lectura: 4 minutos

Visualización de valores faltantes en el conjunto de datos planets

Uno de los problemas más habituales en los conjuntos de datos es la existencia de valores nulos o faltantes (missing values). La existencia de estos valores suele ser una señal de una mala calidad de datos, lo que afecta a la calidad de los posibles modelos que se pueden construir a partir de ellos, por lo que es necesario conocer el volumen del problema lo antes posible. Para gestionar el problema o, en caso de que sea necesario, utilizar algunos de los métodos de imputación de valores faltantes. En Python, Pandas proporciona algunas funciones básicas para analizar el problema. La biblioteca de Missingno va un paso más allá al ofrecer herramientas para la visualización de valores faltantes. Permitiendo con unas simples gráficas identificar dónde se ubican los valores faltantes en cada característica y ver la correlación que existe entre ellos.

Instalación y datos de ejemplo

Como es habitual en Python para instalar Missingno la opción más sencilla es recurrir al comando pip y escribir el siguiente comando en la terminal

pip install missingno

Para evaluar el funcionamiento de Missingno se puede trabajar con el conjunto de datos planets de Seaborn. El cual contiene el método de descubrimiento, el número, el periodo orbital, la masa, la distancia y el año de descubrimiento de 1035 exoplanetas. Como se muestra a continuación en este conjunto de datos existen múltiples valores faltantes debido a que no se conoce el periodo orbital, la masa o la distancia de muchos planetas.

Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo
En Analytics Lane
Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo

import pandas as pd
from seaborn import load_dataset

planets = load_dataset("planets")

planets.isna().sum()
method              0
number              0
orbital_period     43
mass              522
distance          227
year                0
dtype: int64

Publicidad


Visualización de valores faltantes

La función matrix de Missingno permite ver de una forma visual dónde se encuentran los valores nulos en un conjunto de datos. Función a la que únicamente se le debe pasar el conjunto de datos.

import missingno as msno

msno.matrix(planets)
Visualización de valores faltantes en el conjunto de datos planets
Visualización de valores faltantes en el conjunto de datos planets

En la gráfica se puede ver cinco columnas, cada una de las cuales se corresponde con una característica. En cada una de las columnas las líneas blancas indican la posición de los valores faltantes Observándose que los valores faltantes son un problema habitual para la masa.

Además de esto, el gráfico situado a la derecha indica la completitud de los datos, indicando las filas con mayor y menor número de valores faltantes.

Evaluar la correlación entre valores faltantes

En la gráfica anterior se puede ver que cuando no existen valores para la distancia es habitual que tampoco exista para la masa. Algo que sucede con algunos métodos de descubrimiento. Por eso suele ser interesante comprobar si existe correlación entre los valores faltantes. Para esto se puede usar la función heatmap() que solamente requiere el conjunto de datos como parámetro.

msno.heatmap(planets)
Visualización la correlación existente entre los valores faltantes de diferentes características
Visualización la correlación existente entre los valores faltantes de diferentes características

En esta gráfica se puede ver fácilmente el nivel de correlación entre los valores nulos de las diferentes características. Tal como indica la barra de la derecha, el nivel de correlación positiva entre dos valores se indica mediante la intensidad de azul. Siendo especialmente alta entre la masa y la distancia.

Publicidad


Visualización de la cantidad de valores válidos

Finalmente, Missingno también cuenta con una gráfica para visualizar la cantidad de valores nulos que existe en cada una de las características. Esto es, ver su nivel de completitud. Para lo que se debe usar la función bar().

msno.bar(planets)
Visualización de la cantidad de valores no nulos para cada una de las diferentes características
Visualización de la cantidad de valores no nulos para cada una de las diferentes características

En este caso las barras muestran el número de valores que no faltan y su valor se indica al principio.

Conclusiones

En esta ocasión se ha visto una librera para la visualización de valores faltantes en Python. Gracias a las tres gráficas de esta es relativamente fácil ver cuando existe un problema de valores faltantes en el conjunto de datos sobre el que se está trabajando en cada momento.

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 5 / 5. Votos emitidos: 1

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicidad


Publicaciones relacionadas

  • Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo
  • ¿Está concentrado el MSCI World? Un análisis con Gini, Lorenz y leyes de potencia
  • Curiosidad: ¿Por qué usamos p < 0.05? Un umbral que cambió la historia de la ciencia
  • Programador de tareas de Windows: Guía definitiva para automatizar tu trabajo (BAT, PowerShell y Python)
  • La Paradoja del Cumpleaños, o por qué no es tan raro compartir fecha de nacimiento
  • Cómo abrir una ventana de Chrome con tamaño y posición específicos desde la línea de comandos en Windows
  • Curiosidad: El sesgo de supervivencia, o por qué prestar atención sólo a los que “llegaron” puede engañarte
  • Documentar tu API de Express con TypeScript usando OpenAPI (Swagger)
  • Data Lake y Data Warehouse: diferencias, usos y cómo se complementan en la era del dato

Publicado en: Python

Interacciones con los lectores

Comentarios

  1. Carlos Tapasco dice

    agosto 1, 2024 a las 6:06 pm

    Hola,
    Creo que en la sección “Visualización de la cantidad de valores válidos” el comando correcto es msno.bar(planets) para que muestre las columnas nulas en forma de barras.

    Me fue muy útil el artículo, lo encontré porque no entendí todo en la documentación de la librería. Gracias.

    Responder
    • Daniel Rodríguez dice

      octubre 13, 2024 a las 12:54 pm

      Gracias, tienes toda la razón. He actualizado el error en el código de la entrada.

      Responder

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Data Lake y Data Warehouse: diferencias, usos y cómo se complementan en la era del dato

octubre 23, 2025 Por Daniel Rodríguez

Documentar tu API de Express con TypeScript usando OpenAPI (Swagger)

octubre 21, 2025 Por Daniel Rodríguez

Curiosidad: El sesgo de supervivencia, o por qué prestar atención sólo a los que “llegaron” puede engañarte

octubre 16, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Aprovecha un 40% de descuento en Coursera Plus para impulsar tus habilidades en Ciencia de Datos e Inteligencia Artificial publicado el noviembre 9, 2024 | en Noticias, Reseñas
  • Entendiendo la validación cruzada: Selección de la profundidad óptima en un árbol de decisión publicado el septiembre 13, 2024 | en Ciencia de datos
  • Diferencias entre CPU, GPU, TPU y NPU publicado el abril 19, 2023 | en Herramientas
  • El método de Muller e implementación en Python publicado el marzo 24, 2023 | en Ciencia de datos
  • Listado de contraseñas de aplicación creadas Resolver problema de credenciales en Bitbucket publicado el marzo 16, 2022 | en Herramientas

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto