• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • Excel
  • IA Generativa

Aprendizaje no supervisado

Detectando anomalías con Angle-Based Outlier Detection (ABOD)

junio 21, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

La detección de anomalías (también conocidos por su nombre en inglés outliers) son métodos de aprendizaje automático claves en múltiples sectores. Facilitando la identificación de eventos como fraudes, errores en los datos o eventos raros. Entre los métodos existentes para ello, Angle-Based Outlier Detection (ABOD) destaca con un enfoque único al usar los ángulos entre los … [Leer más...] acerca de Detectando anomalías con Angle-Based Outlier Detection (ABOD)

Explorando Clustering-Based Local Outlier Factor (CBLOF) para la detección de anomalías

mayo 31, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 7 minutos

La detección de anomalías es una parte del aprendizaje automático resulta clave en múltiples aplicaciones. Poder saber qué registros son atípicos de un conjunto de datos resulta fundamental en sectores como la seguridad informática, el mantenimiento predictivo o la detección de fraudes. Uno de los algoritmos que se pueden emplear en estos casos es Clustering-Based Local Outlier … [Leer más...] acerca de Explorando Clustering-Based Local Outlier Factor (CBLOF) para la detección de anomalías

Descubriendo anomalías con HBOS (Histogram-Based Outlier Score)

mayo 10, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

Las anomalías, también conocidas como ”outliers”, son puntos que se desvían significativamente de la mayoría de los otros puntos en un conjunto de datos. Por lo que saber detectarlas es una tarea clave en múltiples aplicaciones. Empezando por la seguridad informática, donde los ataques tienen un patrón diferente al uso legítimo de los recursos, hasta en mantenimiento … [Leer más...] acerca de Descubriendo anomalías con HBOS (Histogram-Based Outlier Score)

Publicidad


Desmitificando Elliptic Envelope: Una exploración de la detección de anomalías con estimación de covarianza elíptica

abril 26, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

Entre los algoritmos de Machine Learning para la detección de anomalías Elliptic Envelope destaca por su capacidad para modelar la distribución de los datos utilizando una elipse en el espacio de características. Un enfoque efectivo para identificar anomalías en conjuntos de datos multivariados donde la mayoría de los datos se distribuyen de manera normal. Lo que lo convierte … [Leer más...] acerca de Desmitificando Elliptic Envelope: Una exploración de la detección de anomalías con estimación de covarianza elíptica

Explorando Local Outlier Factor (LOF): Un enfoque eficaz para la detección de anomalías

abril 12, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 5 minutos

Los modelos de detección de anomalías es una parte del aprendizaje automático en la que cada vez existe un mayor interés. Siendo una tarea crítica en diferentes áreas como la seguridad informática, el mantenimiento predictivo o el monitoreo de la salud. Uno de los algoritmos más populares para esta tarea es Local Outlier Factor (LOF). Este algoritmo identifica las anomalías de … [Leer más...] acerca de Explorando Local Outlier Factor (LOF): Un enfoque eficaz para la detección de anomalías

One-Class SVM: Detección de anomalías con máquinas de vector soporte

marzo 15, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

Gráfica con los datos y las anomalías detectadas con OneClass SVM

La detección de anomalías es una de las aplicaciones del aprendizaje no supervisado más utilizadas. Siendo una técnica que se emplea en casos tan diferentes como la detección de ataques cibernéticos, la detección de problemas de salud o la identificación de aplicaciones fraudulentas en servicios financieros o seguros. En todos los casos, identificar anomalías requiere localizar … [Leer más...] acerca de One-Class SVM: Detección de anomalías con máquinas de vector soporte

Publicidad


Isolation Forest: Detectando Anomalías con Eficacia

marzo 1, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

La detección de anomalías es uno de los desafíos más intrigantes del aprendizaje automático. Ya sea en el campo de la seguridad informática, la detección de fraudes financieros o en tareas de mantenimiento predictivo, identificar valores anómalos dentro de grandes conjuntos de datos es clave para evitar problemas en las operaciones. En esta entrada se explicará el algoritmo de … [Leer más...] acerca de Isolation Forest: Detectando Anomalías con Eficacia

Seleccionar el tipo de aprendizaje para un problema de Machine Learning

febrero 9, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 8 minutos

En Aprendizaje Automático o Machine Learning seleccionar el tipo de aprendizaje a usar en cada proyecto es una tarea clave para garantizar el éxito de este. Escogiendo el que sea más adecuado entre aprendizaje supervisado, no supervisado o por refuerzo. Dado que cada uno tiene características propias, haciéndolo adecuados o no para diferentes aplicaciones, seleccionar un modelo … [Leer más...] acerca de Seleccionar el tipo de aprendizaje para un problema de Machine Learning

Paquetes con el algoritmo Apriori en Python

octubre 28, 2022 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 7 minutos

El algoritmo Apriori es uno de los más empleados para la creación de reglas de asociación. A pesar de ello, no existe un paquete que se puede considerar el "estándar" en Python, como sucede con el caso de arules en R. En esta ocasión voy a analizar algunos paquetes que se pueden encontrar en PyPi en los que se implementa el algoritmo Apriori en Python para tener una comparativa … [Leer más...] acerca de Paquetes con el algoritmo Apriori en Python

Publicidad


Cómo funciona k-modes e implementación en Python

octubre 14, 2022 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

La semana pasada publiqué un artículo donde explicaba el funcionamiento del algoritmo de k-means o k-medias junto a una implementación básica en Python. Este algoritmo es uno de los más utilizados para análisis de clúster. Aunque cuenta con un problema importante, al estar basado en la métrica euclídea solamente se puede utilizar cuando todas las características del conjunto de … [Leer más...] acerca de Cómo funciona k-modes e implementación en Python

Cómo funciona k-means e implementación en Python

octubre 7, 2022 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 5 minutos

El algoritmo de k-means o k-medias es uno de los más utilizados dentro del análisis de clúster. Algo que se puede explicar porque este es un algoritmo sencillo, fácil de interpretar y generalmente ofrece buenos resultados en la mayoría de los conjuntos de datos. Por lo que suele estar implementado en la mayoría de las librerías estadísticas y de aprendizaje automático como … [Leer más...] acerca de Cómo funciona k-means e implementación en Python

Diferencias entre Hard y Soft Clustering

enero 14, 2022 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 3 minutos

El análisis de clustering o análisis de grupo es una de las técnicas más populares dentro del aprendizaje no supervisado. Cuando se dispone de un conjunto de datos sin etiquetar, esto es no se tiene un valor o etiqueta asociado a cada registro, se puede utilizar el análisis de clustering para agrupar los elementos que son similares entres sí y separa aquellos que son … [Leer más...] acerca de Diferencias entre Hard y Soft Clustering

  • Página 1
  • Página 2
  • Ir a la página siguiente »

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Cómo calcular el tamaño de la muestra para encuestas

septiembre 9, 2025 Por Daniel Rodríguez

Curiosidad: El origen del análisis exploratorio de datos y el papel de John Tukey

septiembre 4, 2025 Por Daniel Rodríguez

Cómo extender el tamaño de un disco en Rocky Linux 9 usando growpart y LVM

septiembre 2, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Gráficos de barras en Matplotlib publicado el julio 5, 2022 | en Python
  • La distancia de Mahalanobis publicado el abril 19, 2024 | en Ciencia de datos
  • Sistema de ecuaciones Sistemas de ecuaciones lineales con numpy publicado el octubre 29, 2018 | en Python
  • Listas por comprensión en Python publicado el septiembre 23, 2019 | en Python
  • Los tipos de aprendizaje por conjuntos (Ensemble Learning) publicado el enero 28, 2022 | en Ciencia de datos

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes
  • Javier en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto