• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Herramientas
    • Método D’Hondt – Atribución de escaños
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • Excel
  • IA Generativa

Novedades en pandas 0.25

septiembre 2, 2019 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 3 minutos

El pasado 18 de julio de 2019 ha sido publicada la versión 0.25 de pandas. En esta entrada vamos a ver algunas de las novedades que trae esta versión.

Tabla de contenidos

  • 1 Actualización de pandas a la versión 0.25
  • 2 Novedades en pandas 0.25
    • 2.1 Agregación por nombre
    • 2.2 Conversión de listas en columnas con explode()
    • 2.3 Mejora en la visualización de la estructura de datos MultiIndex
  • 3 Las clases SparseDataFrame y SparseSeries son deprecadas
  • 4 Conclusiones

Actualización de pandas a la versión 0.25

Antes de ver las novedades de pandas 0.25 es necesario comprobar que tenemos esta versión instalada en nuestro sistema. Para ellos se puede ejecutar el Python las siguientes líneas de código para obtener la versión.

import pandas as pd

pd.__version__

Si esta no es 0.25 o posterior se puede actualizar mediante conda escribiendo la siguiente línea en el terminal y siguiendo las instrucciones que aparecen en pantalla.

conda update pandas

Alternativamente también es posible actualizar la versión de pandas con pip. Lo que se puede hacer escribiendo la siguiente línea en la terminal.

pip install pandas==0.25

Publicidad


Novedades en pandas 0.25

Agregación por nombre

Una de las características mas llamativas de pandas 0.25 es la agregación por nombre (“named aggregation”) del groupby(). Lo que permite realizar múltiples operaciones sobre un DataFrame y asignar un nombre a las columnas del objeto resultante. Por ejemplo, en el caso de tener un listado de facturas se puede calcular cual es el máximo y el mínimo de unidades de productos en cada una. Lo que se obtiene mediante el siguiente código.

Consistencia en nombres y orden en TypeScript: la base de un código mantenible aplicado a tslane
En Analytics Lane
Consistencia en nombres y orden en TypeScript: la base de un código mantenible aplicado a tslane

invoices = {'invoice': [1, 2, 3, 4, 5, 6],
            'client': [2, 1, 3, 1, 2, 3],
            'units': [3, 2, 2, 3, 1, 1],
            'price': [27.76, 21.13, 29.82, 29.96, 21.11, 23.97],
            'total': [83.28, 42.26, 29.82, 59.92, 21.11, 23.97]}
invoices = pd.DataFrame(invoices)

invoices.groupby('client').agg(
    minimum_units = pd.NamedAgg(column='units', aggfunc='min'),
    maximum_units = pd.NamedAgg(column='units', aggfunc='max'))
        minimum_units  maximum_units
client                              
1                   2              3
2                   1              3
3                   1              2

En esta ocasión se realiza una agrupación de los datos por cliente. Obteniéndose para cada uno de clientes el valor mínimo de unidades y el valor máximo de todas sus facturas. Para ello, en primer lugar, se indica la columna de agregación y posteriormente las columnas y la operación que se realiza sobre ellas.

Dado que esta funcionalidad va a ser habitual se puede reemplazar el método pd.NamedAgg() por una tupla con la columna y la función. Permitiendo escribir la operación de una forma más compacta.

invoices.groupby('client').agg(
    minimum_units = pd.NamedAgg(column='units', aggfunc='min'),
    maximum_units = pd.NamedAgg(column='units', aggfunc='max'))

Obteniéndose así el mismo resultado que anteriormente.

Publicidad


Conversión de listas en columnas con explode()

Otra nueva funcionalidad de pandas 0.25 es la posibilidad de transformar las listas de las columnas de un DataFrame en columnas. Una funcionalidad a la que se accede mediante el método explode(). Por ejemplo, si se dispone de un DataFrame con los identificadores de los clientes en una columna y en otra una lista con los identificadores de las facturas se puede crear un nuevo DataFrame con un registro por cada una de las facturas. Así, si se crea el DataFrame

df = [{'invoices': [1, 2, 3], 'client' : 1},
      {'invoices': [4, 6], 'client' : 2}]
df = pd.DataFrame(df) 
    invoices  client
0  [1, 2, 3]       1
1     [4, 6]       2

Es posible transformar las listas en registros mediante el método explode().

df.explode('invoices')
  invoices  client
0        1       1
0        2       1
0        3       1
1        4       2
1        6       2

Algo que se complemente bien con lo la expansión de listas de valores publicado anteriormente.

Mejora en la visualización de la estructura de datos MultiIndex

Para aquellos que usamos la estructura de datos MultiIndex la visualización de los datos no era precisamente intuitiva. Mostrando todos los niveles y códigos mezclados. En pandas 0.25 la visualización se mejora considerablemente al imprimir cada fila como una tupla, pudiendo así visualizar mejor las columnas.

df = pd.MultiIndex.from_product([['client', 'data'], range(3)])
MultiIndex([('client', 0),
            ('client', 1),
            ('client', 2),
            (  'data', 0),
            (  'data', 1),
            (  'data', 2)],
           )

Publicidad


Las clases SparseDataFrame y SparseSeries son deprecadas

Finalmente, en pandas 0.25 también se han deprecado SparseDataFrame y SparseSeries. Por lo que al utilizar estos métodos se obtendrán mensajes de advertencia. En la nueva versión los valores dispersos se pueden indicar directamente en el método DataFrame(). Así para crear una matriz dispersa se tiene que modificar

pd.SparseDataFrame({"data": [0, 1]})

por

pd.DataFrame({"data": pd.SparseArray([0, 1])})

Conclusiones

En esta entrada se han visto algunas de las novedades disponibles en pandas 0.25. Las cuales son importante conocer, especialmente aquellas que han sido deprecadas para modificarlas correctamente.

Imágenes: Pixabay (Nick115)

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicidad


Publicaciones relacionadas

  • Consistencia en nombres y orden en TypeScript: la base de un código mantenible aplicado a tslane
  • Análisis de Redes con Python
  • Nuevo calendario de publicaciones: más calidad, mejor ritmo
  • Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Cómo eliminar las noticias en Windows 11 y recuperar tu concentración
  • Publicaciones de verano 2025: los trucos más populares, ahora en vídeo
  • Cómo enviar correos desde PowerShell utilizando Brevo: Guía paso a paso para automatizar tus notificaciones
  • Nueva herramienta disponible: Calculadora del Método D’Hondt para la atribución de escaños
  • Cómo enviar correos desde Python utilizando Brevo: Automatiza tus notificaciones con scripts eficientes

Publicado en: Python Etiquetado como: Pandas

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

¡Nuevo video! Gráficos de barras en Matplotlib sin complicarte

julio 17, 2025 Por Daniel Rodríguez

¡Nuevo video! Iterar filas en Pandas sin romperte la cabeza

julio 15, 2025 Por Daniel Rodríguez

¡Nuevo video! Encuentra la posición en listas como un PRO

julio 10, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Obtención de valores únicos de una columna con Pandas publicado el mayo 8, 2019 | en Python
  • Cómo encontrar la posición de elementos en una lista de Python publicado el abril 12, 2021 | en Python
  • Solución al error Failed to download metadata for repo ‘AppStream’ en CentOS 8 publicado el septiembre 13, 2023 | en Herramientas
  • Combinar varios archivos Jupyter Notebook en uno publicado el noviembre 21, 2022 | en Python
  • Sistema de ecuaciones Sistemas de ecuaciones lineales con numpy publicado el octubre 29, 2018 | en Python

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes
  • Javier en Tutorial de Mypy para Principiantes
  • javier en Problemas con listas mutables en Python: Cómo evitar efectos inesperados
  • soldado en Numpy básico: encontrar la posición de un elemento en un Array de Numpy

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto