• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • JavaScript
  • Excel

Importar automáticamente las dependencias en Python con una línea

abril 25, 2022 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 2 minutos

Python es uno de los mejores entornos de trabajo que existen actualmente para los científicos de datos. Existen múltiples librerías con las que realizar de una forma sencilla y eficiente una gran cantidad de tareas, como pueden ser NumPy, Pandas, Matplotlib, Seaborn o Scikit-Learn. Aunque la importación de todas las dependencias necesarias en un proyecto puede llegar a ser una tarea algo tediosa. Especialmente cuando es necesario incluir decenas de líneas import en el código. Algo que se puede evitar con Pyforest, un paquete que permite importar automáticamente las dependencias en Python utilizadas en la mayoría de los proyectos de ciencia de datos.

Instalación y uso básico de Pyforest

Pyforest se puede instalar desde PyPI escribiendo y ejecutando el siguiente comando

pip install pyforest

Una vez instalada la librería solamente se tendrá que importar está en un proyecto para tener disponible las principales librerías empleadas en ciencia de datos. Por ejemplo, se tiene acceso tanto a Pandas como a Seaborn, por lo que el siguiente código funcionará perfectamente.

import pyforest

penguins = sns.load_dataset('penguins')
penguins.head()

sns.countplot(data=penguins, x="species")
Recuento de especies en el conjunto de datos de Pingüinos de Seaborn
Recuento de especies en el conjunto de datos de Pingüinos de Seaborn

¿Qué librerías importa Pyforest?

El objetivo del paquete es facilitar la escritura de código por parte de los científicos de datos, por lo que incluye las típicas importaciones de las librerías más populares como puede ser pandas as pd, numpy as np, matplotlob.pyplot as plt y seaborn as sns. Lista que en la actualidad llega hasta las 80 importaciones que se puede consultar en el GitHub del proyecto.

Publicidad


Siendo posible agregar nuevas importaciones escribiéndolas en un archivo que se debe situar en la ubicación ~/.pyforest/user_imports.py.

Consultar las librerías importadas

Para conocer las librerías que se han importado se puede recurrir a la función active_imports(), la cual devuelve una lista con todas las importaciones activas. Así, si se necesita compartir el código con otros usuarios que pueden no tener instalado Pyforest se puede reemplazar la única importación por las que aparecen en esta lista. Evitando posibles problemas de incompatibilidad al ejecutar el código en otros entornos.

También existe una función para conocer todas las importaciones que no se ha utilizado lazy_imports().

Conclusiones

En esta ocasión se ha visto un paquete de Python con el que simplificar la importación de librerías en la mayoría de los proyectos de ciencia de datos. Al importar automáticamente las dependencias en Python solamente con una línea, evitando de esta manera una tarea que puede ser tediosa. Esto sin perder el control de lo que se importa, ya que mediante la función active_imports() se puede conocer el listado de importaciones activas.

Publicidad


Imagen de Pexels en Pixabay

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicaciones relacionadas

  • logo-wide-lightbg
    Personalización de gráficos en Seaborn: Cambiar…
  • galaxy
    Cómo funciona k-means e implementación en Python
  • python
    Probar en múltiples versiones de Python (Creación de…
  • logo-wide-lightbg
    Introducción a Seaborn: Una visión general de la biblioteca
  • matplotlib
    Generar líneas y áreas arbitrarias en Matplotlib
  • light-bulbs
    Seleccionar las mejores características para un…

Publicado en: Python Etiquetado como: Matplotlib, NumPy, Pandas, Scikit-Learn, Seaborn

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad





Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Facebook
  • GitHub
  • Instagram
  • Pinterest
  • RSS
  • Twitter
  • Tumblr
  • YouTube

Publicidad

Entradas recientes

Mantener un sistema de alta disponibilidad con PostgreSQL y repmgr

diciembre 1, 2023 Por Daniel Rodríguez

Diferencias entre los errores 401 y 403 del estándar HTTP

noviembre 29, 2023 Por Daniel Rodríguez

Ver el código de cualquier función en Python

noviembre 27, 2023 Por Daniel Rodríguez

Publicidad

Es tendencia

  • El método Sainte-Laguë y su implementación en Python publicado el septiembre 22, 2023 | en Ciencia de datos
  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas publicado el mayo 10, 2019 | en Python
  • NumPy NumPy: Crear matrices vacías en NumPy y adjuntar filas o columnas publicado el enero 11, 2021 | en Python
  • ¿Cómo cambiar el nombre de las columnas en Pandas? publicado el mayo 6, 2019 | en Python
  • Ordenación de diccionarios en Python mediante clave o valor publicado el enero 14, 2019 | en Python

Publicidad

Lo mejor valorado

4.9 (22)

Seleccionar filas y columnas en Pandas con iloc y loc

4.7 (12)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.6 (15)

Archivos JSON con Python: lectura y escritura

4.5 (10)

Diferencias entre var y let en JavaScript

4.4 (13)

Ordenación de diccionarios en Python mediante clave o valor

Publicidad

Comentarios recientes

  • Anto en Rendimiento al iterar en JavaScript sobre un vector
  • Daniel Rodríguez en Creación de un certificado Let’s Encrypt en Windows con Win-Acme
  • Guillermo en Creación de un certificado Let’s Encrypt en Windows con Win-Acme
  • Daniel Rodríguez en ¿Cómo eliminar columnas y filas en un dataframe pandas?
  • Miguel en ¿Cómo eliminar columnas y filas en un dataframe pandas?

Publicidad

Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2023 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto