En el análisis de componentes principales (PCA), disponer de un método para identificar el número óptimo de componentes principales es fundamental para reducir el número de elementos sin perder información. Una forma intuitiva y práctica de hacer esto es mediante el Método de Reconstrucción del Error. Bajo este enfoque, en primer lugar, se debe cuantificar la pérdida de … [Leer más...] acerca de Selección del número de componentes principales mediante el Método de Reconstrucción del Error
PCA
Cómo determinar el número de componentes en PCA usando el Criterio de Kaiser
El análisis de componentes principales (PCA, por sus siglas en inglés) es una de las herramientas más populares para reducir la dimensionalidad de los conjuntos de datos. Sin embargo, uno de los mayores desafíos al trabajar con PCA es decidir cuántos componentes principales conservar para capturar la mayor cantidad de información posible sin incluir ruido innecesario. Una … [Leer más...] acerca de Cómo determinar el número de componentes en PCA usando el Criterio de Kaiser
Cómo determinar el número de componentes en PCA usando la varianza explicada acumulada
El análisis de componentes principales (PCA, por sus siglas en inglés) es una técnica ampliamente utilizada para reducir la dimensionalidad en conjuntos de datos. Una de las decisiones clave al aplicar PCA es determinar el número de componentes que se deben seleccionar, logrando un equilibrio entre capturar la mayor cantidad de información posible y evitar redundancias … [Leer más...] acerca de Cómo determinar el número de componentes en PCA usando la varianza explicada acumulada
Eliminación de la multicolinealidad con PCA en modelos de regresión
En aprendizaje automático, la multicolinealidad es un problema habitual que suele afectar a la precisión y la interpretabilidad de los modelos de regresión. Lo que reduce la utilidad de estos. La multicolinealidad aparece cuando dos o más variables independientes están altamente correlacionadas, dificultando determinar el impacto individual de cada una de estas variables en la … [Leer más...] acerca de Eliminación de la multicolinealidad con PCA en modelos de regresión
Introducción al Análisis de Componentes Principales (PCA)
El Análisis de Componentes Principales (PCA) es una técnica ampliamente utilizado en aprendizaje automático. Se utiliza para reducir la dimensionalidad (el número de variables o columnas) de los conjuntos de datos manteniendo al mismo tiempo la mayor cantidad de información posible. PCA transforma las variables originales en otras nuevas, llamadas componentes principales, … [Leer más...] acerca de Introducción al Análisis de Componentes Principales (PCA)