La detección de anomalías (también conocidos por su nombre en inglés outliers) son métodos de aprendizaje automático claves en múltiples sectores. Facilitando la identificación de eventos como fraudes, errores en los datos o eventos raros. Entre los métodos existentes para ello, Angle-Based Outlier Detection (ABOD) destaca con un enfoque único al usar los ángulos entre los … [Leer más...] acerca de Detectando anomalías con Angle-Based Outlier Detection (ABOD)
PyOD
Explorando Clustering-Based Local Outlier Factor (CBLOF) para la detección de anomalías
La detección de anomalías es una parte del aprendizaje automático resulta clave en múltiples aplicaciones. Poder saber qué registros son atípicos de un conjunto de datos resulta fundamental en sectores como la seguridad informática, el mantenimiento predictivo o la detección de fraudes. Uno de los algoritmos que se pueden emplear en estos casos es Clustering-Based Local Outlier … [Leer más...] acerca de Explorando Clustering-Based Local Outlier Factor (CBLOF) para la detección de anomalías
Descubriendo anomalías con HBOS (Histogram-Based Outlier Score)
Las anomalías, también conocidas como ”outliers”, son puntos que se desvían significativamente de la mayoría de los otros puntos en un conjunto de datos. Por lo que saber detectarlas es una tarea clave en múltiples aplicaciones. Empezando por la seguridad informática, donde los ataques tienen un patrón diferente al uso legítimo de los recursos, hasta en mantenimiento … [Leer más...] acerca de Descubriendo anomalías con HBOS (Histogram-Based Outlier Score)