• Ir al contenido principal
  • Skip to secondary menu
  • Ir a la barra lateral primaria
  • Ir al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Noticias
    • Opinión
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Boletín
  • Contacto
  • Acerca de Analytics Lane
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • GearBest
      • GeekBuying
      • JoyBuy

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Criptografía
  • Python
  • Matlab
  • R
  • Julia
  • JavaScript
  • Herramientas
  • Opinión
  • Noticias

Instalación de varias versiones de Python en Anaconda

mayo 16, 2018 Por Daniel Rodríguez Dejar un comentario

Anaconda

La existencia de dos versiones de Python, la 2.x y la 3.x, incompatibles entre sí genera que muchas veces no encontremos con librerías que no son compatibles con nuestra versión. En caso de que tengamos este problema es una buena idea instalar más de una versión en nuestros ordenadores.

Anaconda posiblemente sea la distribución de Python por excelencia para los que trabajamos en proyectos de ciencia de datos y aprendizaje automático. Gracias a que facilita enormemente la administración de los paquetes y el despliegue de soluciones. Actualmente cuando accedemos al área de descargas nos encontramos que es necesario seleccionar el sistema operativo y la versión de Python que deseamos: 2.7 o 3.x. Una vez realizada la instalación no tenemos porque quedar únicamente con la versión de seleccionada, sino que se puede añadir otros con unos sencillos pasos.

Creación de un nuevo entorno

Lo primero que se ha de realizar para instalar una nueva versión de Python es crear un nuevo entrono de conda. Lo que se puede realizar con una línea de comando. Por ejemplo, si de desea crear un nuevo entorno de Python 2.7 se ha de escribir:

conda create -n python2 python=2.7 anaconda

A partir de lo que se descargar el nuevo entorno, instalándose en la ruta `~/anaconda/envs/python2` los archivos necesarios. Ahora para cambiar del entorno actual al nuevo simplemente se le ha de escribir:

source activate python2

Una vez terminemos de trabajar en este entorno se puede volver al original con la línea

source deactivate

Esto es si se desea realizar el cambio mediante la línea de comandos. El entorno gráfico de Anaconda mostrará ahora dos entornos el base o “root” (el que se ha instalado por defecto) y el creado en el paso anterior.

Entrono Anaconda Navigator
Selector de en el entrono Anaconda Navigator

En caso de que sea necesario se pueden añadir más entornos, por ejemplo, para poder trabajar con Python 3.5 y Python 3.6.

En el siguiente video se muestra el proceso de instalación completo.

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 5 / 5. Votos emitidos: 2

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Contenido relacionado

Archivado en:Python Etiquetado con:Anaconda

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad


Barra lateral primaria

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

¡Síguenos en redes sociales!

  • facebook
  • github
  • telegram
  • pinterest
  • rss
  • tumblr
  • twitter
  • youtube

Publicidad

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Entradas recientes

Usar dispositivos USB en VirtualBox

enero 15, 2021 Por Daniel Rodríguez Dejar un comentario

Eliminar elementos en matrices de Matlab

enero 13, 2021 Por Daniel Rodríguez Dejar un comentario

NumPy

NumPy: Crear matrices vacías en NumPy y adjuntar filas o columnas

enero 11, 2021 Por Daniel Rodríguez Dejar un comentario

Publicidad

Es tendencia

  • Excel en Python Guardar y leer archivos Excel en Python bajo Python
  • Seleccionar filas y columnas en Pandas con iloc y loc bajo Python
  • ¿Cómo eliminar columnas y filas en un dataframe pandas? bajo Python
  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas bajo Python
  • Contar palabras en una celda Excel bajo Herramientas

Publicidad

Lo mejor valorado

5 (3)

Ordenar una matriz en Matlab en base a una fila o columna

5 (3)

Automatizar el análisis de datos con Pandas-Profiling

5 (5)

Diferencias entre var y let en JavaScript

5 (6)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

5 (3)

Unir y combinar dataframes con pandas en Python

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Calculadora de probabilidades de ganar a la lotería
  • abel en Calculadora de probabilidades de ganar a la lotería
  • David Arias en Diferencias entre regresión y clasificación en aprendizaje automático
  • Juan Aguilar en Archivos JSON con Python: lectura y escritura
  • Camilo en Contar palabras en una celda Excel

Publicidad

Footer

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Noticias
  • Opinión

Programación

  • JavaScript
  • Julia
  • Matlab
  • Python
  • R

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Lo más popular
  • Tienda

Tiendas Afiliadas

  • AliExpress
  • Amazon
  • BangGood
  • GearBest
  • Geekbuying
  • JoyBuy

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Amazon

2018-2020 Analytics Lane · Términos y condiciones · Política de Cookies · Política de Privacidad · Herramientas de privacidad · Contacto