• Ir al contenido principal
  • Skip to secondary menu
  • Ir a la barra lateral primaria
  • Ir al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Noticias
    • Opinión
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Boletín
  • Contacto
  • Acerca de Analytics Lane
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • GearBest
      • GeekBuying
      • JoyBuy

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Criptografía
  • Python
  • Matlab
  • R
  • Julia
  • JavaScript
  • Herramientas
  • Opinión
  • Noticias

La interpretación de las redes neuronales

noviembre 16, 2018 Por Daniel Rodríguez Dejar un comentario

Las redes neuronales profundas han demostrado ser una de las herramientas más potentes a la hora de realizar predicciones. Existen pocas técnicas en el aprendizaje automático que permitan alcanzar el nivel de precisión que ofrecen estas. Por eso no es de extrañar que el número de casos de éxito en los que son utilizadas no haga más que aumentar. Aún así, su utilización es rechazada en muchos entornos por ser considerados sistemas de “caja negra”. Sistemas en los que no se puede “comprender” fácilmente por qué el modelo ha llegado a la conclusión. Así la dificultad para obtener una interpretación de las redes neuronales provoca que se utilicen otras técnicas que son más fáciles de interpretar. A pesar de que estos sean más precisos que otros modelos en los que sí sea posible indicar cómo se ha llegado a la conclusión.

Bases de rechazo de los modelos de redes neuronales

Básicamente, el fundamento del rechazo nace en la imposibilidad de justificar los resultados en base a una combinación lineal simple de los valores de entrada. Por ejemplo, en una regresión lineal múltiple es posible identificar que características afectan a los resultados. Pudiéndose conocer tanto en la intensidad como el sentido que afecta cada característica al resultado final. En las redes neuronales profundas esto no es posible de forma genérica. Simplificando, en estos modelos el resultado final no depende de las características de entrada, sino que de las transformaciones realizadas sobre estas en las capas intermedias. Cada una de las cuales es un modelo en sí.

Al utilizar estos argumentos para justificar el rechazo de los modelos basados en redes neuronales profundas lo que se está diciendo es que la realidad detrás de los modelos no puede ser compleja. Lo que claramente no es cierto. Asumiendo de esta forma que solamente se puede predecir aquello que se puede entender en términos lineales.

Este punto se justifica habitualmente por la accionabilidad de los resultados. Al conocer cómo afecta una característica al resultado final, se puede buscar o evitar esta. Por ejemplo, la edad de los clientes puede indicar la rentabilidad de estos. Pero esta puede cambiar en función a otras características de forma no lineal. Por lo que buscar únicamente un grupo de edad puede no ser la mejor estrategia.

Posibilidad de obtener resultados absurdos con redes neuronales

Otra justificación para la no utilización del modelo basados en redes neuronales profundas es la posibilidad de que se obtengan resultados absurdos. Esto puede suceder en casi todos los tipos de modelos, incluso en una simple regresión lineal. Estas, fuera del rango de ajuste, también pueden ofrecer valores que se pueden considerar como absurdos. Aún así no son rechazados, simplemente no son utilizados fuera de su rango de definición.

Conclusiones

En resumen, la no utilización de estos modelos se sustenta principalmente en la incomodidad que produce no poder comprender sus resultados. Entendiendo por “comprender” que estos se pueden explicar de forma sencilla en función de las características de entrada. En ciertos entornos esto se puede justificar por la accionabilidad, la posibilidad de usar los modelos no solo para predecir, sino que también para definir estrategias.  

Imágenes: Pixabay (Gerd Altmann)

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Contenido relacionado

Archivado en:Ciencia de datos Etiquetado con:Deep learning, Machine learning

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad


Barra lateral primaria

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

¡Síguenos en redes sociales!

  • facebook
  • github
  • telegram
  • pinterest
  • rss
  • tumblr
  • twitter
  • youtube

Publicidad

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Entradas recientes

Usar dispositivos USB en VirtualBox

enero 15, 2021 Por Daniel Rodríguez Dejar un comentario

Eliminar elementos en matrices de Matlab

enero 13, 2021 Por Daniel Rodríguez Dejar un comentario

NumPy

NumPy: Crear matrices vacías en NumPy y adjuntar filas o columnas

enero 11, 2021 Por Daniel Rodríguez Dejar un comentario

Publicidad

Es tendencia

  • Seleccionar filas y columnas en Pandas con iloc y loc bajo Python
  • ¿Cómo eliminar columnas y filas en un dataframe pandas? bajo Python
  • Excel en Python Guardar y leer archivos Excel en Python bajo Python
  • Unir y combinar dataframes con pandas en Python bajo Python
  • ¿Cómo cambiar el nombre de las columnas en Pandas? bajo Python

Publicidad

Lo mejor valorado

5 (3)

Ordenar una matriz en Matlab en base a una fila o columna

5 (3)

Automatizar el análisis de datos con Pandas-Profiling

5 (5)

Diferencias entre var y let en JavaScript

5 (6)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

5 (3)

Unir y combinar dataframes con pandas en Python

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Calculadora de probabilidades de ganar a la lotería
  • abel en Calculadora de probabilidades de ganar a la lotería
  • David Arias en Diferencias entre regresión y clasificación en aprendizaje automático
  • Juan Aguilar en Archivos JSON con Python: lectura y escritura
  • Camilo en Contar palabras en una celda Excel

Publicidad

Footer

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Noticias
  • Opinión

Programación

  • JavaScript
  • Julia
  • Matlab
  • Python
  • R

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Lo más popular
  • Tienda

Tiendas Afiliadas

  • AliExpress
  • Amazon
  • BangGood
  • GearBest
  • Geekbuying
  • JoyBuy

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Amazon

2018-2020 Analytics Lane · Términos y condiciones · Política de Cookies · Política de Privacidad · Herramientas de privacidad · Contacto