• Ir al contenido principal
  • Skip to secondary menu
  • Ir a la barra lateral primaria
  • Ir al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Noticias
    • Opinión
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Boletín
  • Contacto
  • Acerca de Analytics Lane
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • GearBest
      • GeekBuying
      • JoyBuy

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Criptografía
  • Python
  • Matlab
  • R
  • Julia
  • JavaScript
  • Herramientas
  • Opinión
  • Noticias

Matrices dispersas (“Sparse Matrix”)

octubre 21, 2019 Por Daniel Rodríguez Dejar un comentario

En función de la densidad de ceros en una matriz estas se pueden clasificar como dispersas (“sparse”), en las que valores igual a cero son dominantes, o densas (“dense”), en las que hay pocos registros iguales a cero. En aprendizaje automático es habitual encontrar matrices dispersas. Por ejemplo, en características que representan propiedades binarias o recuentos de ocurrencias. Almacena directamente en memoria las matrices dispersas como si las densas es un problema, ya que en la mayoría de los registros no se guarda información. Pero utiliza la memoria.

Las matrices dispersas

Las matrices dispersas son aquellas en las que la mayoría de los registros son cero. Este hecho hace que sea posible más eficaz trabajar con ellas guardando sólo las posiciones de los valores de los elementos distintos de cero. Lo que supone un importante ahorro en el a la hora de almacenar estas matrices en memoria o disco.

Otro problema de las matrices dispersas es a la hora de utilizarlas en operaciones matemáticas. Unas matrices muy grandes pueden no caber en memoria, haciendo más complicado llevar a cabo las operaciones.

Para medir el grado de dispersión de una matriz se puede utilizar un sencillo indicador (“sparsity”). La ratio entre el número de ceros en una matriz y el número total de elementos permite identificar aquellas matrices que pueden ser problemáticas. En Python se puede implementar esta métrica con el siguiente código.

import numpy as np

def sparsity(sparse):
    return (sparse == 0).sum() / sparse.size

sparsity(np.identity(3))

En donde se puede ver que la matriz identidad de orden 3 tiene un grado de dispersión de 0,66.

Cómo trabajar con matrices dispersas

La solución para trabajar con matrices dispersas es usar una estructura de datos diferente a la que se utiliza en matrices densas. En lugar de almacenar los valores unos detrás de otros se pueden utilizar diferentes estructuras como:

  • Diccionarios: la llave del diccionario es la posición en la matriz y la clave es el valor del registro.
  • Lista de listas: cada fila de la matriz se guarda como una lista y en cada una de las listas secundarias se guarda el índice de la columna y el valor.
  • Lista de coordenadas: se crear una lista de tuplas en las que se almacena las coordenadas y el valor.

Matrices dispersas en Python

Las herramientas para transformar matrices densas en dispersar, trabajar con matrices dispersas y volver a convertir las matrices dispersas en densas se pueden encontrar en la librería SciPy. Además, la mayoría de las funciones de álgebra lineal tanto de SciPy como NumPy permiten utilizar estas matrices de forma transparente. Es decir, pueden utilizar matrices dispersas o de forma indiferente.

La función con la que se puede convertir una matriz densa en dispersa es csr_matrix(). Posteriormente las matrices dispersas disponen de una propiedad todense() con la que se obtiene una matriz densa. Esto es lo que se puede ver en el siguiente ejemplo:

from scipy.sparse import csr_matrix

# Convertir un matriz densa en dispersa
S = csr_matrix(np.identity(3))

# Representación de una matriz dispersa
print(S)

# Convertir un matriz dispersa en densa
D = S.todense()

# Representación de una matriz densa
print(D)
  (0, 0)	1.0
  (1, 1)	1.0
  (2, 2)	1.0
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]]

En este ejemplo se pude ver como en la matriz dispensa solamente se almacena los valores que son diferentes de cero junto a sus coordenadas. Mientras que en la matriz densa se almacenar todos. Esto es un ahorro de memoria mayor a medida que crezca el grado de dispersión de la matriz.

Conclusiones

Las matrices son objetos que requieren bastante memoria. Cuando estas son dispersas y grandes es aconsejable almacenarlas de forma diferente para reducir el espacio que estas consumen en memoria.

Imágenes: Pixabay (Steve Buissinne)

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 2 / 5. Votos emitidos: 2

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Contenido relacionado

Archivado en:Ciencia de datos Etiquetado con:numpy, SciPy

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad


Barra lateral primaria

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

¡Síguenos en redes sociales!

  • facebook
  • github
  • telegram
  • pinterest
  • rss
  • tumblr
  • twitter
  • youtube

Publicidad

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Entradas recientes

Creación de un certificado Let’s Encrypt en Windows con Win-Acme

enero 22, 2021 Por Daniel Rodríguez Dejar un comentario

Aplicaciones de Node en producción con PM2

enero 20, 2021 Por Daniel Rodríguez Dejar un comentario

SQLite en Python

enero 18, 2021 Por Daniel Rodríguez Dejar un comentario

Publicidad

Es tendencia

  • Seleccionar filas y columnas en Pandas con iloc y loc bajo Python
  • ¿Cómo eliminar columnas y filas en un dataframe pandas? bajo Python
  • Excel en Python Guardar y leer archivos Excel en Python bajo Python
  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas bajo Python
  • ¿Cómo cambiar el nombre de las columnas en Pandas? bajo Python

Publicidad

Lo mejor valorado

5 (3)

Ordenar una matriz en Matlab en base a una fila o columna

5 (3)

Automatizar el análisis de datos con Pandas-Profiling

5 (5)

Diferencias entre var y let en JavaScript

5 (6)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

5 (3)

Unir y combinar dataframes con pandas en Python

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Calculadora de probabilidades de ganar a la lotería
  • abel en Calculadora de probabilidades de ganar a la lotería
  • David Arias en Diferencias entre regresión y clasificación en aprendizaje automático
  • Juan Aguilar en Archivos JSON con Python: lectura y escritura
  • Camilo en Contar palabras en una celda Excel

Publicidad

Footer

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Noticias
  • Opinión

Programación

  • JavaScript
  • Julia
  • Matlab
  • Python
  • R

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Lo más popular
  • Tienda

Tiendas Afiliadas

  • AliExpress
  • Amazon
  • BangGood
  • GearBest
  • Geekbuying
  • JoyBuy

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Amazon

2018-2020 Analytics Lane · Términos y condiciones · Política de Cookies · Política de Privacidad · Herramientas de privacidad · Contacto