• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • JavaScript
  • Excel

Numpy básico: seleccionar elementos condicionalmente en Numpy

noviembre 20, 2019 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 2 minutos

Una tarea que se realiza casi a diario con Numpy es seleccionar elementos de un vector. Lo que se puede hacer en base a índices o, más interesante y productivo todavía, en base a una o varias condiciones. Como que los elementos a seleccionar sean menores que un valor o se encuentre en un rango. Esto es lo que se mostrará a continuación: cómo seleccionar elementos condicionalmente en Numpy.

A modo de ejemplo en el resto de la entrada se emplea un vector con los números entre 0 y 9, lo que se puede crear fácilmente con np.arrange.

import numpy as np

arr = np.arange(10)
arr
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Seleccionar elementos en base a una condición en Numpy

Al aplicar un operador de igualdad o comparación a un objeto Numpy se obtiene un nuevo vector de valores booleanos. Por ejemplo, si se utiliza el operador menor que para comparar el vector de ejemplo con un número como 5 se obtiene lo siguiente:

arr < 5
array([ True,  True,  True,  True,  True, False, False, False, False, False])

Un nuevo vector con valores booleanos en el que los primeros cinco elementos son ciertos, mientras que los últimos cinco son falsos. Este resultado se puede guardar en una variable y utilizar para seleccionar los elementos que cumple la condición. Si a un array de Numpy se le pasa un vector de valores booleanos el resultado es un nuevo vector solamente con elementos en las posiciones que son ciertas. Lo que se puede ver en el siguiente ejemplo.

menor_5 = arr < 5
arr[menor_5]
array([0, 1, 2, 3, 4])

Aunque es más compacto no guardar la comparación en una variable, sino que utilizar directamente para seleccionar los elementos.

Publicidad


arr[arr < 5]

Seleccionar elementos en base a múltiples condiciones en Numpy

Una vez entendido que como se puede utilizar vectores booleanos para seleccionar elementos en Numpy se puede construir operaciones complejas que permitan seleccionar lo que se desee. Pudiendo así procesar los datos directamente en Python. Por ejemplo, nos podemos plantear como seleccionar los valores que son pares mayores de cinco. Los elementos pares serán aquellos cuyo resto de dividir por dos es cero y los mayores de cinco se obtienen con el operador mayor que. Esto es, el ejemplo se puede resolver con la siguiente línea.

arr[(np.mod(arr, 2) == 0) & (arr > 5)]
array([6, 8])

Conclusiones

En esta entrada se ha visto la forma de seleccionar elementos condicionalmente en Numpy. Una técnica con la que se mejorar la capacidad de analizar grandes conjuntos de datos en Python de una forma muy eficiente. Ya que facilita implementar fácilmente filtros complejos.

Imágenes: Pixabay (Marit Welker)

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicaciones relacionadas

  • Numpy básico: el método numpy.where()
    Numpy básico: el método numpy.where()
  • Selección condicional con Pandas
    Selección condicional con Pandas
  • Numpy básico: crear vectores con valores equiespaciados en Numpy
    Numpy básico: crear vectores con valores equiespaciados en…
  • ¿Cómo eliminar columnas o filas multi-índice en un dataframe de Pandas?
    ¿Cómo eliminar columnas o filas multi-índice en un dataframe…
  • Métodos mágicos de las clases Python
    Métodos mágicos de las clases Python
  • NumPy
    NumPy: La función reshape de NumPy con ejemplos

Publicado en: Python Etiquetado como: NumPy

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad




Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Facebook
  • GitHub
  • Instagram
  • Pinterest
  • RSS
  • Twitter
  • Tumblr
  • YouTube

Publicidad

Entradas recientes

El método de Hare-Niemeyer y su implementación en Python

septiembre 29, 2023 Por Daniel Rodríguez

Redimensionar una partición de disco LVM con espacio no asignado en Linux

septiembre 27, 2023 Por Daniel Rodríguez

¿Cómo saber la versión de Pandas o cualquier otra librería en Python?

septiembre 25, 2023 Por Daniel Rodríguez

Publicidad

Es tendencia

  • ¿Cómo cambiar el nombre de las columnas en Pandas? publicado el mayo 6, 2019 | en Python
  • Seleccionar filas y columnas en Pandas con iloc y loc publicado el junio 21, 2019 | en Python
  • pandas Pandas: Cambiar los tipos de datos en los DataFrames publicado el julio 15, 2021 | en Python
  • Numpy básico: valores mínimos y máximos en arrays Numpy publicado el octubre 23, 2019 | en Python
  • Unir y combinar dataframes con pandas en Python publicado el septiembre 10, 2018 | en Python

Publicidad

Lo mejor valorado

4.9 (22)

Seleccionar filas y columnas en Pandas con iloc y loc

4.7 (12)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.6 (15)

Archivos JSON con Python: lectura y escritura

4.5 (10)

Diferencias entre var y let en JavaScript

4.3 (12)

Ordenación de diccionarios en Python mediante clave o valor

Publicidad

Comentarios recientes

  • Daniel Rodríguez en ¿Cómo eliminar columnas y filas en un dataframe pandas?
  • Miguel en ¿Cómo eliminar columnas y filas en un dataframe pandas?
  • alberto en Resolver problema de credenciales en Bitbucket
  • Pablo en Aplicar el método D’Hondt en Excel
  • Agapito en Creación de un EXE desde un archivo Python en Windows

Publicidad

Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2023 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto