• Ir al contenido principal
  • Skip to secondary menu
  • Ir a la barra lateral primaria
  • Ir al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Noticias
    • Opinión
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Boletín
  • Contacto
  • Acerca de Analytics Lane
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • GearBest
      • GeekBuying
      • JoyBuy

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Criptografía
  • Python
  • Matlab
  • R
  • Julia
  • JavaScript
  • Herramientas
  • Opinión
  • Noticias

Usar Python desde Matlab

noviembre 29, 2019 Por Daniel Rodríguez Dejar un comentario

Una de las capacidades menos conocidas de Matlab es la posibilidad de ejecutar directamente código Python desde la consola o un script. Accediendo a ellas de una forma completamente transparente. Lo que permite ampliar rápidamente las capacidades de Matlab con todas las funciones o librerías que existen en Python. En esta entrada se va a mostrar cómo hacer para llamar funciones de Python desde Matlab.

Llamar funciones de Python desde Matlab

La forma de acceder a las funciones u objetos de Python en Matlab es mediante el paquete py. Siendo las propiedades de este paquete las funciones y paquetes de Python. Así, para llamar a una función de Python solamente se tiene que escribir esta como una propiedad de py. Por ejemplo, para imprimir el mensaje “Hola Python” solamente se tiene que escribir la siguiente línea

py.print('¡Hola Python!')

Por otro lado, para acceder a las funciones de una librería de Python no es necesario importar esta, ya que las instaladas son una propiedad de py. Así para comprobar la versión de Python que se está utilizando se puede usar.

py.sys.version
  Python str with no properties.

    2.7.16 (default, Oct 17 2019, 17:14:30) 
    [GCC 4.2.1 Compatible Apple LLVM 11.0.0 (clang-1100.0.32.4) (-macos10.15-objc-s

Cambiar la versión de Python empleada en Matlab

En el ejemplo anterior se ha visto que Matlab usa por defecto la instalación de Python del sistema. En el caso de las versiones actuales de macOS Python 2.7. Pero se puede modificar para llamar a cualquier otra instalación. Por ejemplo, una distribución de Anaconda. Obteniendo de esta manera el acceso a todos los paquetes que se instalan por defecto en esta distribución como scikit-learn.

La función de Matlab para cambiar las opciones es pyversion(). Una función que solamente se puede llamar desde si no se ha utilizado Python previamente en la sesión. Por lo que en nuestro caso es necesario reiniciar Matlab. Una vez reiniciado Matlab simplemente se tiene que pasar como parámetro la ruta a la instalación de Python.

pyversion('/anaconda/bin/python'),

A partir de ahora la instalación de Python que usará Matlab será la que le hemos indicado en la ruta. Por ejemplo, se podrá crear un objeto KMeans simplemente escribiendo:

py.sklearn.cluster.KMeans()

Llamar a funciones en archivos de Python

Otra opción, que posiblemente sea la más interesante, es llamar a código que se tenga en Python. Permitiendo reutilizar el trabajo realizado en Matlab. Para lo que se tiene que guardar el código en un archivo con extensión py, archivo que pasa a ser una propiedad del paquete py. Por ejemplo, se puede guardar el siguiente archivo como functions.py y acceder a las funciones simplemente.

suma  = py.functions.sum(2, 3)
cuadrado = py.functions.squared(2)

conclusiones

En esta entrada se han visto los fundamentos para poder utilizar Python en Matlab. Pudiendo así utilizar las librerías de Python en un entorno Matlab. Algo que ofrece múltiples posibilidades.

Imágenes: Pixabay (Michael Schwarzenberger)

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Contenido relacionado

Archivado en:Matlab, Python Etiquetado con:scikit-learn

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad


Barra lateral primaria

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

¡Síguenos en redes sociales!

  • facebook
  • github
  • telegram
  • pinterest
  • rss
  • tumblr
  • twitter
  • youtube

Publicidad

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Entradas recientes

Usar dispositivos USB en VirtualBox

enero 15, 2021 Por Daniel Rodríguez Dejar un comentario

Eliminar elementos en matrices de Matlab

enero 13, 2021 Por Daniel Rodríguez Dejar un comentario

NumPy

NumPy: Crear matrices vacías en NumPy y adjuntar filas o columnas

enero 11, 2021 Por Daniel Rodríguez Dejar un comentario

Publicidad

Es tendencia

  • Seleccionar filas y columnas en Pandas con iloc y loc bajo Python
  • ¿Cómo eliminar columnas y filas en un dataframe pandas? bajo Python
  • Excel en Python Guardar y leer archivos Excel en Python bajo Python
  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas bajo Python
  • Codificación JSON Archivos JSON con Python: lectura y escritura bajo Python

Publicidad

Lo mejor valorado

5 (3)

Ordenar una matriz en Matlab en base a una fila o columna

5 (3)

Automatizar el análisis de datos con Pandas-Profiling

5 (5)

Diferencias entre var y let en JavaScript

5 (6)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

5 (3)

Unir y combinar dataframes con pandas en Python

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Calculadora de probabilidades de ganar a la lotería
  • abel en Calculadora de probabilidades de ganar a la lotería
  • David Arias en Diferencias entre regresión y clasificación en aprendizaje automático
  • Juan Aguilar en Archivos JSON con Python: lectura y escritura
  • Camilo en Contar palabras en una celda Excel

Publicidad

Footer

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Noticias
  • Opinión

Programación

  • JavaScript
  • Julia
  • Matlab
  • Python
  • R

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Lo más popular
  • Tienda

Tiendas Afiliadas

  • AliExpress
  • Amazon
  • BangGood
  • GearBest
  • Geekbuying
  • JoyBuy

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Amazon

2018-2020 Analytics Lane · Términos y condiciones · Política de Cookies · Política de Privacidad · Herramientas de privacidad · Contacto