• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • IA Generativa
  • Python
  • Pandas
  • NumPy
  • Excel
  • Matlab

Truco R: Creación de diagramas de Venn en R

septiembre 30, 2020 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 2 minutos

Los diagramas de Venn es una gráfica en la que se muestran las relaciones entre diferentes colecciones de conjuntos. En estos diagramas los conjuntos se representan como regiones cerradas y las intersecciones indican el grado de relación. Veamos cómo se pueden crear fácilmente diagramas de Venn en R.

Paquete eulerr

Para la creación de los diagramas de Venn en R vamos a utilizar el paquete eulerr. Un paquete, que, si no tenemos instalado, se puede instalar desde el CRAN con el comando:

install.packages("eulerr")

Publicidad


Creación del diagrama de Venn

Ahora para crear el diagrama de Venn necesitamos un conjunto de datos en el que indicamos el tamaño de los conjuntos y las relaciones. Lo que se hace con listas de pares de clave-valor, en los que la clave es el nombre del conjunto y el valor su tamaño. Para indicar las relaciones se usa claves que son la concatenación de los nombres de dos grupos unidos con &. Esto es, si tenemos un conjunto llamado “uno” y otro llamado “dos” los valores se asignan directamente a los nombres y la intersección de los dos grupos se indica con la clave “uno&dos”.

Una vez importados los datos, solamente se tiene que llamar a la función euler() del paquete eulerr para crear el diagrama de Venn. Una vez hecho esto se puede sacar por pantalla con la función plot(). Tal como se muestra en el siguiente código.

Curiosidad: La Ley de Twyman y la trampa de los datos “interesantes”
En Analytics Lane
Curiosidad: La Ley de Twyman y la trampa de los datos “interesantes”

library(eulerr)

data <- c(uno=100,
          dos=220,
          tres=150,
          "uno&dos"=24,
          "uno&tres"=10,
          "dos&tres"=22)
venn <- euler(data)

plot(venn)

Lo que genera un diagrama como el de la siguiente figura.

Diagramas de Venn generado con el código R del ejemplo
Diagramas de Venn generado con el código R del ejemplo

Conclusiones

Si necesitamos crear un diagramas de Venn, el paquete eulerr contiene una función con la que se puede crear una rápidamente. Usando para ello los valores reales.

Imagen de Theodor Moise en Pixabay

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicidad


Publicaciones relacionadas

  • Curiosidad: La Ley de Twyman y la trampa de los datos “interesantes”
  • Copias de seguridad automáticas en SQL Server con rotación de archivos
  • Curiosidad: La Paradoja de Simpson, o por qué no siempre debes fiarte de los promedios
  • Error npm ERR! code EACCES al instalar paquetes en Node.js: Cómo solucionarlo paso a paso
  • Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo
  • ¿Está concentrado el MSCI World? Un análisis con Gini, Lorenz y leyes de potencia
  • Curiosidad: ¿Por qué usamos p < 0.05? Un umbral que cambió la historia de la ciencia
  • Programador de tareas de Windows: Guía definitiva para automatizar tu trabajo (BAT, PowerShell y Python)
  • La Paradoja del Cumpleaños, o por qué no es tan raro compartir fecha de nacimiento

Publicado en: R Etiquetado como: Truco

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

La Paradoja del Cumpleaños, o por qué no es tan raro compartir fecha de nacimiento

octubre 9, 2025 Por Daniel Rodríguez

Programador de tareas de Windows: Guía definitiva para automatizar tu trabajo (BAT, PowerShell y Python)

octubre 7, 2025 Por Daniel Rodríguez

Curiosidad: ¿Por qué usamos p < 0.05? Un umbral que cambió la historia de la ciencia

octubre 2, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Gráficos de barras en Matplotlib publicado el julio 5, 2022 | en Python
  • Cómo calcular el tamaño de la muestra para encuestas publicado el septiembre 9, 2025 | en Ciencia de datos
  • Truco: Validar palabras con acentos mediante expresiones regulares publicado el mayo 12, 2021 | en JavaScript
  • Los mejores conjuntos de datos para Machine Learning publicado el septiembre 11, 2024 | en Ciencia de datos, Reseñas
  • Cómo solucionar problemas de red en VirtualBox: Guía completa publicado el junio 11, 2025 | en Herramientas

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto