• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • JavaScript
  • Excel

Mejorar el rendimiento en Jupyter con Cython

abril 19, 2021 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 3 minutos

Cython es una librería de Python con la cual se puede aumentar fácilmente el rendimiento de nuestro código en más de un orden de magnitud. Lo que se puede conseguir incluso sin la necesidad de incluir cambios en el código. Anteriormente he escrito una entrada con los fundamentos de esta librería y cómo mejorar el rendimiento de los archivos py. En esta ocasión se explicará cómo se puede usar Cython para mejorar el rendimiento en Jupyter.

Instalación de Cython

Antes de trabajar con Cython es necesario asegurarnos que la librería se encuentra instalada en nuestro sistema. Para ello podemos intentar importar la librería un Notebook ejecutando el siguiente código

%load_ext Cython

En el caso de que lo tengamos instalado se importará sin generar ningún mensaje, en caso contrario fallará indicando que no encuentra un modulo llamada Cython. Si nos aparece este error solamente tendremos que ir a la terminal e instalar Cython mediante pip, lo que se puede conseguir mediante el comando

pip install cython

Uso de Cython en Jupyter

Una vez comprobado que tenemos instalado Cython en nuestro entorno de trabajo utilizarlo en un Notebook es algo tremendamente sencillo. Únicamente hay que importar la librería escribiendo el comando %load_ext Cython en una celda. De este modo se cargará el comando mágico %%cython que debemos incluir en cada una de las celdas que deseamos compilar con Cython. Así las funciones que se definan en las celdas donde se incluya este comando mejorarán considerablemente su rendimiento, aunque se usen en otras celdas sin este comando.

Publicidad


En ningún caso se debe utilizar import Cython para realizar la importación, ya que de este modo no se importaría el comando mágico %%cython.

Comparación de rendimiento con la función de Fibonacci

La función de Fibonacci ya la hemos usado en otras ocasiones para comprobar el rendimiento de Cython. En esta ocasión se puede crear una celda con el siguiente código

def fibonacci(n):
    if n < 2:
        return n
    else:
        return fibonacci(n-1) + fibonacci(n-2)

Posteriormente, en otra celda se escribe el comando mágico %%cython y copiamos el código anterior cambiando el nombre de la función.

%%cython

def fibonacci_cython(n):
    if n < 2:
        return n
    else:
        return fibonacci_cython(n-1) + fibonacci_cython(n-2)

Ahora se puede comprar cuánto tarda cada una de las funciones mediante el comando %%time. Así para la primera función se puede ver

Publicidad


%%time
fibonacci(40)
CPU times: user 29.8 s, sys: 170 ms, total: 30 s
Wall time: 30.4 s

102334155

Mientras que para fibonacci_cython se obtiene

%%time
fibonacci_cython(40)
CPU times: user 10.6 s, sys: 76.2 ms, total: 10.6 s
Wall time: 10.7 s

102334155

Pudiendo observar que la segunda función es tres veces más rápida que la primera. Usando en ambos casos el mismo código.

Mejoras indicando el tipo de dato

El simple hecho de usar el comando mágico %%cython ha hecho que el código sea tres veces más rápido, pero aún se puede mejorar más si se ayuda a Cython indicando los tipos de datos. Por ejemplo, en el caso de la función de Fibonacci tanto la entrada como la salida son número enteros, por lo que se puede reescribir la función de la siguiente manera.

%%cython

cpdef int fibonacci_def(int n):
    if n < 2:
        return n
    else:
        return fibonacci_def(n-1) + fibonacci_def(n-2)

Comprobando ahora el tiempo que necesita esta versión para obtener el mismo resultado.

%%time
fibonacci_def(40)
CPU times: user 515 ms, sys: 3.5 ms, total: 518 ms
Wall time: 522 ms

102334155

Lo que nos indica que hemos pasado de 30 segundos a 0.5, esto es un factor 60 respecto a la primera versión.

Publicidad


Conclusiones

Posiblemente una de las quejas que más escucho, y en muchas ocasiones hago, de Python es que es un lenguaje lento, pero esto es algo que se puede solucionar con librerías como Cython. En esta ocasión hemos visto cómo se puede integrar esta librería para mejorar el rendimiento en Jupyter.

Imagen de WikiImages en Pixabay

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicaciones relacionadas

  • laptop
    Cómo leer y escribir archivos en Python
  • superbike
    Almacenar archivos CSV 10 veces más rápido en Python…
  • pandas
    Pandas: Leer archivos CSV con diferentes…
  • cobweb
    Mapas de calor y diagramas de araña en Python
  • Codificación JSON
    Archivos JSON con Python: lectura y escritura
  • metro
    Mejora del rendimiento de pandas con Modin

Publicado en: Python Etiquetado como: Jupyter

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad





Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Facebook
  • GitHub
  • Instagram
  • Pinterest
  • RSS
  • Twitter
  • Tumblr
  • YouTube

Publicidad

Entradas recientes

Mantener un sistema de alta disponibilidad con PostgreSQL y repmgr

diciembre 1, 2023 Por Daniel Rodríguez

Diferencias entre los errores 401 y 403 del estándar HTTP

noviembre 29, 2023 Por Daniel Rodríguez

Ver el código de cualquier función en Python

noviembre 27, 2023 Por Daniel Rodríguez

Publicidad

Es tendencia

  • El método Sainte-Laguë y su implementación en Python publicado el septiembre 22, 2023 | en Ciencia de datos
  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas publicado el mayo 10, 2019 | en Python
  • NumPy NumPy: Crear matrices vacías en NumPy y adjuntar filas o columnas publicado el enero 11, 2021 | en Python
  • ¿Cómo cambiar el nombre de las columnas en Pandas? publicado el mayo 6, 2019 | en Python
  • Ordenación de diccionarios en Python mediante clave o valor publicado el enero 14, 2019 | en Python

Publicidad

Lo mejor valorado

4.9 (22)

Seleccionar filas y columnas en Pandas con iloc y loc

4.7 (12)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.6 (15)

Archivos JSON con Python: lectura y escritura

4.5 (10)

Diferencias entre var y let en JavaScript

4.4 (13)

Ordenación de diccionarios en Python mediante clave o valor

Publicidad

Comentarios recientes

  • Anto en Rendimiento al iterar en JavaScript sobre un vector
  • Daniel Rodríguez en Creación de un certificado Let’s Encrypt en Windows con Win-Acme
  • Guillermo en Creación de un certificado Let’s Encrypt en Windows con Win-Acme
  • Daniel Rodríguez en ¿Cómo eliminar columnas y filas en un dataframe pandas?
  • Miguel en ¿Cómo eliminar columnas y filas en un dataframe pandas?

Publicidad

Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2023 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto