• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • IA Generativa
  • Python
  • Pandas
  • NumPy
  • Excel
  • Matlab

Listas por comprensión en Python

septiembre 23, 2019 Por Daniel Rodríguez 5 comentarios
Tiempo de lectura: 3 minutos

Las listas por comprensión es una construcción sintáctica disponible en Python con la que se pueden crear lista a partir de otros elementos iterables. Siendo una de las contracciones más elegantes del lenguaje. A continuación, se mostrará la sintaxis básica para trabajar con las listas por comprensión.

Sintaxis de las listas por comprensión en Python

Las sintaxis básicas de las listas por comprensión en Python se pueden resumir en la siguiente línea:

nueva_lista = [expresion bucle_for condiciones]

Entre corchetes se escribe una expresión seguida de un bucle for sobre el que se itera, para finalmente escribir unas condiciones.

Publicidad


Ejemplo básico de uso

Un ejemplo básico de uso de las listas por comprensión es aplicar una operación sobre un vector. Por ejemplo, añadir una cantidad a todos los elementos de este. Lo que se puede hacer con un bucle tradicional

numbers = [1, 2, 3, 4]
results = []

for n in numbers:
    results.append(n + 1)
    
results
[2, 3, 4, 5]

Aunque es más elegante utilizar las listas por comprensión

numbers = [1, 2, 3, 4]
results = [n + 1 for n in numbers]

Obteniéndose el mismo resultado solamente con mucho menos código. En el código los corchetes indican que la salida de la lista n + 1 es la expresión que ejecutar para cada uno de los elementos del bucle for. Es decir, que a cada uno de los valores sobre los que se itera se añada se le sume la unidad.

Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo
En Analytics Lane
Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo

Condiciones en las listas por comprensión

Tal como se ha indicado anteriormente es posible añadir condiciones a las listas por comprensión en Python. Para lo que solemne se tiene que agregar un if al final con la condición. Siguiendo con el ejemplo anterior, se podría sumar uno solamente a los registros que sean menores que tres.

numbers = [1, 2, 3, 4]
results = [n + 1 for n in numbers if n < 3]
results
[2, 3]

Al ejecutar el código se puede observar que solamente se tienen dos registros, los que cumple la condición. En el caso de que se desee realizar una operación diferente cuando no se cumple la condición se puede hacer con un else. Aunque es necesario cambiar modificar el orden. Si se utiliza un else la condición se tiene que situar justamente después de la expresión y antes del for. Por ejemplo, en el siguiente código los números mayores o iguales que tres se dejan sin modificar.

numbers = [1, 2, 3, 4]
results = [n + 1 if n < 3 else n for n in numbers]
results
[2, 3, 3, 4]

Publicidad


Identificar los numero comunes en dos listas

La posibilidad de anidar bucles for en las listas por comprensión permiten realizar operaciones realmente completadas. Así se puede iterar sobre varios objetos iterables para aplicar una condición.

Un ejemplo típico de esto es buscar el conjunto de elementos comunes en dos listas. Lo que se puede conseguir de con el siguiente código.

names_1 = ['Oralie' ,'Imojean' ,'Michele', 'Ailbert', 'Stevy']
names_2 = ['Jayson', 'Oralie' ,'Michele', 'Stevy', 'Alwyn']

common = [a for a in names_1 for b in names_2 if a == b]
common
['Oralie', 'Michele', 'Stevy']

En donde se selecciona el valor de la primera lista si al iterar sobre la segunda también se encuentra en esta. Si no aparece el registro de ignorará. Para hacer esto mismo con un bucle for tradicional es necesario escribir mucho más código.

list_a = ['Oralie' ,'Imojean' ,'Michele', 'Ailbert', 'Stevy']
list_b = ['Jayson', 'Oralie' ,'Michele', 'Stevy', 'Alwyn']
common = []

for a in names_1:
    for b in names_2:
        if a == b:
            common.append(a)

Conclusiones

En esta entrada se han visto las listas por comprensión en Python, una construcción sintáctica disponible que ofrece grandes posibilidades. Permitiendo crear código más compacto y legible.

Las listas por comprensión son otra de las herramientas disponibles en Python que permite crear código compacto y elegante. Como los que se ha visto en la introducción a la programación funcional.

Imágenes: Pixabay (Pexels)

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 5 / 5. Votos emitidos: 3

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicidad


Publicaciones relacionadas

  • Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo
  • ¿Está concentrado el MSCI World? Un análisis con Gini, Lorenz y leyes de potencia
  • Curiosidad: ¿Por qué usamos p < 0.05? Un umbral que cambió la historia de la ciencia
  • Programador de tareas de Windows: Guía definitiva para automatizar tu trabajo (BAT, PowerShell y Python)
  • La Paradoja del Cumpleaños, o por qué no es tan raro compartir fecha de nacimiento
  • Cómo abrir una ventana de Chrome con tamaño y posición específicos desde la línea de comandos en Windows
  • Curiosidad: El sesgo de supervivencia, o por qué prestar atención sólo a los que “llegaron” puede engañarte
  • Documentar tu API de Express con TypeScript usando OpenAPI (Swagger)
  • Data Lake y Data Warehouse: diferencias, usos y cómo se complementan en la era del dato

Publicado en: Python

Interacciones con los lectores

Comentarios

  1. Oscar Varón dice

    julio 13, 2021 a las 1:42 pm

    Muy buen articulo, felicitaciones !!! claro, conciso y entendible

    Responder
  2. Gustavo dice

    agosto 4, 2021 a las 4:32 pm

    Me sirvio bastante!

    Responder
  3. Domingo dice

    marzo 2, 2022 a las 7:53 am

    Muchas gracias por toda esta explicación para mi que que no soy veterano.
    Me permito hacer una pregunta, ya que he entendido todo, salvo el siguiente ejemplo:
    numbers = [1, 2, 3, 4]
    results = [n + 1 if n < 3 else n for n in numbers]
    results
    No entiendo el 3 dos veces?
    Perdone que le haga perder tiempo,
    Atentamente,
    Domingo Velazquez
    [email protected]

    Responder
    • Daniel Rodríguez dice

      marzo 2, 2022 a las 11:57 am

      Posiblemente no sea el mejor ejemplo, pero lo que hace es sumar un número a todos los valores que sean menores de 3, por eso solo cambian los dos primeros y aparecen dos 3.

      Responder
  4. Domingo Velazquez dice

    marzo 2, 2022 a las 6:47 pm

    Gracias, ya lo entendí.
    Domingo Velazquez

    Responder

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Data Lake y Data Warehouse: diferencias, usos y cómo se complementan en la era del dato

octubre 23, 2025 Por Daniel Rodríguez

Documentar tu API de Express con TypeScript usando OpenAPI (Swagger)

octubre 21, 2025 Por Daniel Rodríguez

Curiosidad: El sesgo de supervivencia, o por qué prestar atención sólo a los que “llegaron” puede engañarte

octubre 16, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Hoja de cálculo para repartir los escaños en base al método D’Hont Aplicar el método D’Hondt en Excel publicado el abril 14, 2021 | en Herramientas
  • Cómo solucionar problemas de red en VirtualBox: Guía completa publicado el junio 11, 2025 | en Herramientas
  • Cómo calcular el tamaño de la muestra para encuestas publicado el septiembre 9, 2025 | en Ciencia de datos
  • La tabla de la web finalmente importada en Excel Importar tablas desde la web en Excel publicado el octubre 21, 2020 | en Herramientas
  • Introducción a igraph en R (Parte 9): Centralidad de Prestigio y Autoridad (modelo HITS, Hyperlink-Induced Topic Search) publicado el mayo 14, 2025 | en R

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto