• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • IA Generativa
  • Python
  • Pandas
  • NumPy
  • Excel
  • Matlab

¿Siguen las visitas a Analytics Lane la ley de la potencia?

diciembre 10, 2021 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 3 minutos

Visitas a Analytics Lane modeladas por la ley de la potencia, la distribución lognormal y la ley de la potencia truncada

Hace un par de años, en los primeros días del blog, intenté comprobar si las visitas a Analytics Lane seguían la ley de la potencia. Sin obtener en aquel momento un resultado claro. La ley de la potencia es una relación entre magnitudes que se puede observar en múltiples fenómenos de carácter físico, biológico o debido a la actividad humana. Ahora, una vez han aumentado el númoro de páginas y visitas en el blog es un buen momento para revisar si esta ley se verifica o existen otras alternativas más adecuadas como una distribución lognormal.

Paquete para trabajar con la ley de la potencia

En PyPI existe un paquete que facilita con el que se pueden automatizar el análisis de datos para comprobar si estos siguen una ley como la de la potencia o son mejores otras alternativas. Un paquete que se llama powerlaw y se puede instalar simplemente con el siguiente comando

pip install powerlaw

Publicidad


Datos de visitar a Analytics Lane

Para el análisis se van a utilizar los datos de visitas únicas a las 500 páginas más populares durante el pasado mes. Evitando de esta manera el error que puede introducir las búsquedas u otras visitas a las páginas inexistentes.

Ajustando los datos a la ley de la potencia

Al ajustar el número de visitas con la ley se obtiene una gráfica como la siguiente. Una gráfica en la que se ve como los datos no siguen perfectamente la ley, especialmente en las páginas menos visitadas.

Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo
En Analytics Lane
Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo

Visitas a Analytics Lane modeladas por la ley de la potencia
Visitas a Analytics Lane modeladas por la ley de la potencia

Publicidad


Distribución Lognormal

Una alternativa para explicar las visitas al blog es una distribución Lognormal. Lo que se puede comparar en la siguiente gráfica.

Visitas a Analytics Lane modeladas por la ley de la potencia y la distribución lognormal
Visitas a Analytics Lane modeladas por la ley de la potencia y la distribución lognormal

En este caso se puede ver claramente que los datos se ajustan mejor a una distribución Lognormal. Lo que se puede comprobar mediante el método distribution_compare() del paquete powerlaw.

Ley de la potencia truncada

Otra alternativa es la ley de la potencia truncada, una modificación en la que se tiene en cuenta el hecho de usar datos truncados, como es el caso. Solamente se usan las visitas a las 500 primeras páginas. En este caso el resultado con los tres modelos se puede ver en la siguiente gráfica.

Visitas a Analytics Lane modeladas por la ley de la potencia, la distribución lognormal y la ley de la potencia truncada
Visitas a Analytics Lane modeladas por la ley de la potencia, la distribución lognormal y la ley de la potencia truncada

En este caso es dificil apreciar, pero el modelo basado en la versión truncada es ligeramente mejor que la Lognormal. Algo que también se puede validar con el método distribution_compare().

Los resultados que se muestran en la entrada se pueden conseguir con el siguiente código

import pandas as pd
import powerlaw
from matplotlib.pyplot import legend

visitas = pd.read_excel('visitas.xlsx')

fit = powerlaw.Fit(visitas.Unicas)

fig = fit.plot_ccdf(linewidth = 2)
fit.power_law.plot_ccdf(ax = fig, color = 'r', linewidth = 2, linestyle = '--')
fit.lognormal.plot_ccdf(ax = fig, color = 'g', linewidth = 2, linestyle = '--')
fit.truncated_power_law.plot_ccdf(ax = fig, color = 'b', linewidth = 2, linestyle = '--')
legend(['Visitas', 'Power Law', 'Lognormal', 'Truncate Power Law'])

Publicidad


Conclusiones

En esta ocasión se ha podido comprobar que las visitas a una web, por lo menos en el caso de Analytics Lane, cumple la ley. Aunque para validarlo hay que tener en cuenta que los datos empleados para el análisis suelen estar truncados para evitar ruido causado por visitas que no deberían tenerse en cuenta.

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicaciones relacionadas

  • Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo
  • ¿Está concentrado el MSCI World? Un análisis con Gini, Lorenz y leyes de potencia
  • Curiosidad: ¿Por qué usamos p < 0.05? Un umbral que cambió la historia de la ciencia
  • Programador de tareas de Windows: Guía definitiva para automatizar tu trabajo (BAT, PowerShell y Python)
  • La Paradoja del Cumpleaños, o por qué no es tan raro compartir fecha de nacimiento
  • Cómo abrir una ventana de Chrome con tamaño y posición específicos desde la línea de comandos en Windows
  • Curiosidad: El sesgo de supervivencia, o por qué prestar atención sólo a los que “llegaron” puede engañarte
  • Documentar tu API de Express con TypeScript usando OpenAPI (Swagger)
  • Data Lake y Data Warehouse: diferencias, usos y cómo se complementan en la era del dato

Publicado en: Ciencia de datos Etiquetado como: Analytics Lane

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Data Lake y Data Warehouse: diferencias, usos y cómo se complementan en la era del dato

octubre 23, 2025 Por Daniel Rodríguez

Documentar tu API de Express con TypeScript usando OpenAPI (Swagger)

octubre 21, 2025 Por Daniel Rodríguez

Curiosidad: El sesgo de supervivencia, o por qué prestar atención sólo a los que “llegaron” puede engañarte

octubre 16, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Gráficos de barras en Matplotlib publicado el julio 5, 2022 | en Python
  • Método del codo (Elbow method) para seleccionar el número óptimo de clústeres en K-means publicado el junio 9, 2023 | en Ciencia de datos
  • Duplicado Eliminar registros duplicados en pandas publicado el junio 20, 2018 | en Python
  • Curiosidad: El uso del número 42 para fijar la semilla publicado el julio 7, 2023 | en Opinión
  • Truco SQL: Ignorar acentos en búsquedas SQL publicado el noviembre 6, 2020 | en Herramientas

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto