• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • JavaScript
  • Excel

Ley potencial y visitas Analytics Lane

octubre 18, 2019 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 2 minutos

Relación entre visitas número de visitar y frecuencia

La ley potencial es una relación entre magnitudes que se puede observar en diferentes fenómenos de carácter físico, biológico o debidos a la actividad humana. Los cuales se caracterizan por tener distribuciones sesgadas de los valores en los que un pequeño número de registros tienen valores más elevados. Además de tener invariancia de escala. Algunos fenómenos que siguen esta ley son las erupciones volcánicas, el tamaño de las poblaciones o la popularidad de los apellidos en una población.

Otro aspecto en el que se espera que se cumpla la ley potencial es el número de visitas a una web. Por lo que es una buena idea probarlo con las visitas a Analytics Lane. Comprobado de esta manera si se el número de visitas cumplen esta ley o no.

La ley potencial

En muchos fenómenos se puede relacionar dos magnitudes mediante la ley potencial. Una ley que se puede expresar como

y = a x^k

donde x e y es una magnitud son las magnitudes que relacionar y a y k son los constantes. Una relación simple que tiene múltiples e interesantes características. Siendo una de las principales características la invariancia de escala. Esto es, si se multiplica una magnitud por una constante la ley también se multiplica por una constante.

Representación de la ley potencial

Las magnitudes de los fenómenos que siguen la ley potencial se pueden represar en una línea recta cuando ambas escalas son logarítmicas. Lo que se puede comprobar simplemente aplicando el logaritmo en ambas partes de la ecuación.

Publicidad


\log(y) = \log(a) + k \log(x).

Lo que es una recta con pendiente k y altura el origen \log(a).

Aplicación a las visitas a Analytics Lane

Para verificar la ley potencial hemos consultado el numero de visitas a las diferentes páginas de Analytics Lane durante los últimos tres meses y ordenadas estas de menor a mayor. Estos datos se guardan en un archivo Excel. Para comprobar si se verifica la ley se importan los datos del archivo Excel en Python con pandas. Posteriormente se calcula el logaritmo de las visitas y frecuencias para representar con seaborn. Utilizándose la función lmplot() que también implemente la regresión lineal.

import numpy as np
import pandas as pd
import seaborn as sns

visits = pd.read_excel('power.xlsx')
visits = np.log(visits)

sns.lmplot(x='visitas', y='frecuencia', data=visits)

Al ejecutar este código se obtiene la siguiente figura.

Relación entre visitas número de visitar y frecuencia
Relación entre visitas número de visitar y frecuencia

En esta se puede ver que las visitas a Analytics Lane no siguen estrictamente la ley potencial. Pero se ajustan bastante. El R^2 del modelo es 0,72.

Conclusiones

En esta entrada se ha comprobado cómo las visitas a Analytics Lane no se ajustan estrictamente a la ley potencial.

Publicidad


¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicaciones relacionadas

  • Modelos de datos
    El problema de desequilibrio de clases en conjuntos de datos…
  • Prueba de independencia de Chi-cuadrado
    Prueba de independencia de Chi-cuadrado
  • ¿Por qué es necesario estandarizar los datos en análisis de clúster?
    ¿Por qué es necesario estandarizar los datos en análisis de…
  • Muestreo de Thompson y BayesUCB para un problema Bandido Multibrazo (Multi-Armed Bandit)
    Muestreo de Thompson y BayesUCB para un problema Bandido…
  • ¿Qué es el análisis de clúster?
    ¿Qué es el análisis de clúster?
  • Preguntas en formularios: precisión y entorno
    Preguntas en formularios: precisión y entorno

Publicado en: Ciencia de datos Etiquetado como: Analytics Lane, Pandas, Seaborn

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad




Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Facebook
  • GitHub
  • Instagram
  • Pinterest
  • RSS
  • Twitter
  • Tumblr
  • YouTube

Publicidad

Entradas recientes

El método de Hare-Niemeyer y su implementación en Python

septiembre 29, 2023 Por Daniel Rodríguez

Redimensionar una partición de disco LVM con espacio no asignado en Linux

septiembre 27, 2023 Por Daniel Rodríguez

¿Cómo saber la versión de Pandas o cualquier otra librería en Python?

septiembre 25, 2023 Por Daniel Rodríguez

Publicidad

Es tendencia

  • ¿Cómo eliminar columnas y filas en un dataframe pandas? publicado el marzo 25, 2019 | en Python
  • Seleccionar filas y columnas en Pandas con iloc y loc publicado el junio 21, 2019 | en Python
  • La aplicación Auto Py to Exe Creación de un EXE desde un archivo Python en Windows publicado el mayo 16, 2022 | en Python
  • ¿Cómo cambiar el nombre de las columnas en Pandas? publicado el mayo 6, 2019 | en Python
  • Archivos Guardar y leer archivos CSV con Python publicado el junio 15, 2018 | en Python

Publicidad

Lo mejor valorado

4.9 (22)

Seleccionar filas y columnas en Pandas con iloc y loc

4.7 (12)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.6 (15)

Archivos JSON con Python: lectura y escritura

4.5 (10)

Diferencias entre var y let en JavaScript

4.3 (12)

Ordenación de diccionarios en Python mediante clave o valor

Publicidad

Comentarios recientes

  • Daniel Rodríguez en ¿Cómo eliminar columnas y filas en un dataframe pandas?
  • Miguel en ¿Cómo eliminar columnas y filas en un dataframe pandas?
  • alberto en Resolver problema de credenciales en Bitbucket
  • Pablo en Aplicar el método D’Hondt en Excel
  • Agapito en Creación de un EXE desde un archivo Python en Windows

Publicidad

Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2023 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto