Los modelos de aprendizaje automático se dividen en tres familias: el aprendizaje supervisado, el aprendizaje no supervisado y el aprendizaje por refuerzo. Siendo posiblemente el más utilizado el aprendizaje no supervisado. Principalmente debido a que no necesita datos etiquetados con para el proceso de entrenamiento, como es requerido en aprendizaje supervisado. A … [Leer más...] acerca de Diferentes modelos de aprendizaje no supervisado
Aprendizaje no supervisado
¿Qué es el análisis de clúster?
El término análisis de clúster hace referencia a la familia de algoritmos que permiten agrupar registros similares de un conjunto de datos en grupos. A cada uno de estos grupos es a lo que se denomina un clúster. El objetivo final del análisis es asignar a cada clúster los registros que son similares entre sí. Al mismo tiempo que los registros del resto de clústeres son … [Leer más...] acerca de ¿Qué es el análisis de clúster?
Aprendizaje supervisado y aprendizaje no supervisado
Los modelos de aprendizaje automático se pueden dividir en dos grandes familias: aprendizaje supervisado y aprendizaje no supervisado. La principal diferencia entre estas dos familias se encuentra en los datos de entrenamiento. En el aprendizaje supervisado los resultados que se desean obtener del modelo son conocidos previamente. Siendo utilizados para guiar su entrenamiento. … [Leer más...] acerca de Aprendizaje supervisado y aprendizaje no supervisado


