• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • Excel
  • IA Generativa

Numpy básico: inicialización de arrays en Numpy

octubre 9, 2019 Por Daniel Rodríguez 1 comentario
Tiempo de lectura: 2 minutos

En esta entrada se va a ver como hacer una tarea básica, la inicialización de arrays en Numpy con diferentes valores. Una tarea que puede ser tediosa si no se conocen y utilizan las herramientas que provee Numpy para ello. Además, estas son operaciones necesarias antes de comenzar con diferentes análisis de datos.

Inicialización de arrays con ceros con np.zeros()

Numpy dispone de una función con la que se pueden crear arrays de un tamaño dado inicializados con ceros. Esta función es np.zeros() y tiene la siguiente forma:

np.zeros(shape, dtype=float, order='C')

donde

  • shape: son las dimensiones del array Numpy que se desea construir. Si es un escalar creará un vector, mientras si se indica una tupla se obtendrá una matriz.
  • dtype: es un parámetro opcional en el que se indica el tipo de dato. Por defecto se utiliza el tipo de dato float.
  • order: es un parámetro opcional con el que se indica como se llenarán las matrices: F primero las filas o C primero las columnas. Siendo el valor por defecto C.

Así para crear una vector de 3 elementos con ceros se puede escribir.

import numpy as np

np.zeros(3)
array([0., 0., 0.])

Por otro lado, si lo que se desea es crear una matriz de ceros de 3 por 2 simplemente se tiene que escribir la siguiente línea de código.

Tutorial de Mypy para Principiantes
En Analytics Lane
Tutorial de Mypy para Principiantes

np.zeros((3, 2))
array([[0., 0.],
       [0., 0.],
       [0., 0.]])

En este caso a la función se la ha pasado una tupla con las dimensiones de la matriz, por lo que el resultado es el esperado: una matriz.

Publicidad


Inicialización de arrays con unos con np.ones()

En otros casos puede ser que sea necesario crear matrices con ceros. En este caso la función que hay que utilizar es np.ones(), la que se utiliza igual que np.zeros(). Así para crear un vector de unos es necesario escribir algo como

np.ones(3)
array([1., 1., 1.])

Por otro lado, cuando se desea crear una matriz se tiene que escribir algo como.

np.ones((3, 2))
array([[1., 1.],
       [1., 1.],
       [1., 1.]])

Inicialización de arrays con otros valores

En muchas ocasiones puede que el valor por defecto con el que sea necesario inicializar los arrays no es ni cero ni uno. En tal caso se puede utilizar el método np.ones() para crear un array de unos y multiplicar este por el valor deseado. Por ejemplo, un array de 3 se puede obtener mediante.

np.ones(3) * 3
array([3., 3., 3.])

Publicidad


Conclusiones

En esta entrada se ha visto un par de funciones de Numpy con las que se simplificar el trabajo de crear arrays con un valor por defecto. np.zeros() para la creación de ceros y np.ones() para unos. La inicialización de arrays en Numpy con diferentes valores es una tarea habitual que se simplifica mucho con estas funciones. Siendo más estas funciones sencillas para la tarea que la creación se arrays similares a partir de listas o tuplas.

Imágenes: Pixabay (Marit Welker)

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 4 / 5. Votos emitidos: 4

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicaciones relacionadas

  • Tutorial de Mypy para Principiantes
  • Semana sin nuevas publicaciones
  • Combinar gráficos con FacetGrid: Cómo analizar tendencias complejas en múltiples paneles con Seaborn
  • Introducción a igraph en R (Parte 6): Centralidad de Katz en grafos
  • Cómo modificar los mensajes de commit en Git
  • Optimización de memoria en Pandas: Usar tipos de datos personalizados para manejar grandes conjuntos de datos
  • Introducción a igraph en R (Parte 7): Centralidad de Bonacich
  • ¡Analytics Lane cumple siete años!
  • Sincronizar múltiples ejes con twinx(): Comparación de datos con diferentes escalas en un solo gráfico con Matplotlib

Publicado en: Python Etiquetado como: NumPy

Interacciones con los lectores

Comentarios

  1. daniel ramirez dice

    julio 4, 2021 a las 11:19 pm

    está bueno como parte 1.

    Responder

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Variables globales en Python: Problemas y cómo evitarlos

mayo 12, 2025 Por Daniel Rodríguez

Los valores numéricos en los ordenadores: Entendiendo enteros, flotantes y más

mayo 9, 2025 Por Daniel Rodríguez

Introducción a igraph en R (Parte 8): PageRank

mayo 7, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Método del codo (Elbow method) para seleccionar el número óptimo de clústeres en K-means publicado el junio 9, 2023 | en Ciencia de datos
  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas publicado el mayo 10, 2019 | en Python
  • Seleccionar la opción para compactar la base de datos en Microsoft SQL Server Manager Studio Reducir el tamaño en SQL Server de una base de datos publicado el febrero 10, 2023 | en Herramientas
  • Diferencias entre CPU, GPU, TPU y NPU publicado el abril 19, 2023 | en Herramientas
  • Copiar y pegar Activar copiar y pegar en VirtualBox publicado el mayo 1, 2019 | en Herramientas

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Tutorial de Mypy para Principiantes
  • Javier en Tutorial de Mypy para Principiantes
  • javier en Problemas con listas mutables en Python: Cómo evitar efectos inesperados
  • soldado en Numpy básico: encontrar la posición de un elemento en un Array de Numpy
  • plataformas AéReas en Numpy básico: encontrar la posición de un elemento en un Array de Numpy

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto