• Ir al contenido principal
  • Skip to secondary menu
  • Ir a la barra lateral primaria
  • Ir al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Noticias
    • Opinión
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Boletín
  • Contacto
  • Acerca de Analytics Lane
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • GearBest
      • GeekBuying
      • JoyBuy

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Criptografía
  • Python
  • Matlab
  • R
  • Julia
  • JavaScript
  • Herramientas
  • Opinión
  • Noticias

Numpy básico: inicialización de arrays en Numpy

octubre 9, 2019 Por Daniel Rodríguez Dejar un comentario

En esta entrada se va a ver como hacer una tarea básica, la inicialización de arrays en Numpy con diferentes valores. Una tarea que puede ser tediosa si no se conocen y utilizan las herramientas que provee Numpy para ello. Además, estas son operaciones necesarias antes de comenzar con diferentes análisis de datos.

Inicialización de arrays con ceros con np.zeros()

Numpy dispone de una función con la que se pueden crear arrays de un tamaño dado inicializados con ceros. Esta función es np.zeros() y tiene la siguiente forma:

np.zeros(shape, dtype=float, order='C')

donde

  • shape: son las dimensiones del array Numpy que se desea construir. Si es un escalar creará un vector, mientras si se indica una tupla se obtendrá una matriz.
  • dtype: es un parámetro opcional en el que se indica el tipo de dato. Por defecto se utiliza el tipo de dato float.
  • order: es un parámetro opcional con el que se indica como se llenarán las matrices: F primero las filas o C primero las columnas. Siendo el valor por defecto C.

Así para crear una vector de 3 elementos con ceros se puede escribir.

import numpy as np

np.zeros(3)
array([0., 0., 0.])

Por otro lado, si lo que se desea es crear una matriz de ceros de 3 por 2 simplemente se tiene que escribir la siguiente línea de código.

np.zeros((3, 2))
array([[0., 0.],
       [0., 0.],
       [0., 0.]])

En este caso a la función se la ha pasado una tupla con las dimensiones de la matriz, por lo que el resultado es el esperado: una matriz.

Inicialización de arrays con unos con np.ones()

En otros casos puede ser que sea necesario crear matrices con ceros. En este caso la función que hay que utilizar es np.ones(), la que se utiliza igual que np.zeros(). Así para crear un vector de unos es necesario escribir algo como

np.ones(3)
array([1., 1., 1.])

Por otro lado, cuando se desea crear una matriz se tiene que escribir algo como.

np.ones((3, 2))
array([[1., 1.],
       [1., 1.],
       [1., 1.]])

Inicialización de arrays con otros valores

En muchas ocasiones puede que el valor por defecto con el que sea necesario inicializar los arrays no es ni cero ni uno. En tal caso se puede utilizar el método np.ones() para crear un array de unos y multiplicar este por el valor deseado. Por ejemplo, un array de 3 se puede obtener mediante.

np.ones(3) * 3
array([3., 3., 3.])

Conclusiones

En esta entrada se ha visto un par de funciones de Numpy con las que se simplificar el trabajo de crear arrays con un valor por defecto. np.zeros() para la creación de ceros y np.ones() para unos. La inicialización de arrays en Numpy con diferentes valores es una tarea habitual que se simplifica mucho con estas funciones. Siendo más estas funciones sencillas para la tarea que la creación se arrays similares a partir de listas o tuplas.

Imágenes: Pixabay (Marit Welker)

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 3 / 5. Votos emitidos: 2

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Contenido relacionado

Archivado en:Python Etiquetado con:numpy

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad


Barra lateral primaria

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

¡Síguenos en redes sociales!

  • facebook
  • github
  • telegram
  • pinterest
  • rss
  • tumblr
  • twitter
  • youtube

Publicidad

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Entradas recientes

Usar dispositivos USB en VirtualBox

enero 15, 2021 Por Daniel Rodríguez Dejar un comentario

Eliminar elementos en matrices de Matlab

enero 13, 2021 Por Daniel Rodríguez Dejar un comentario

NumPy

NumPy: Crear matrices vacías en NumPy y adjuntar filas o columnas

enero 11, 2021 Por Daniel Rodríguez Dejar un comentario

Publicidad

Es tendencia

  • Seleccionar filas y columnas en Pandas con iloc y loc bajo Python
  • Excel en Python Guardar y leer archivos Excel en Python bajo Python
  • ¿Cómo eliminar columnas y filas en un dataframe pandas? bajo Python
  • Unir y combinar dataframes con pandas en Python bajo Python
  • Contar palabras en una celda Excel bajo Herramientas

Publicidad

Lo mejor valorado

5 (3)

Ordenar una matriz en Matlab en base a una fila o columna

5 (3)

Automatizar el análisis de datos con Pandas-Profiling

5 (5)

Diferencias entre var y let en JavaScript

5 (6)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

5 (3)

Unir y combinar dataframes con pandas en Python

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Calculadora de probabilidades de ganar a la lotería
  • abel en Calculadora de probabilidades de ganar a la lotería
  • David Arias en Diferencias entre regresión y clasificación en aprendizaje automático
  • Juan Aguilar en Archivos JSON con Python: lectura y escritura
  • Camilo en Contar palabras en una celda Excel

Publicidad

Footer

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Noticias
  • Opinión

Programación

  • JavaScript
  • Julia
  • Matlab
  • Python
  • R

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Lo más popular
  • Tienda

Tiendas Afiliadas

  • AliExpress
  • Amazon
  • BangGood
  • GearBest
  • Geekbuying
  • JoyBuy

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Amazon

2018-2020 Analytics Lane · Términos y condiciones · Política de Cookies · Política de Privacidad · Herramientas de privacidad · Contacto