• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • JavaScript
  • Excel

Numpy básico: inicialización de arrays en Numpy

octubre 9, 2019 Por Daniel Rodríguez 1 comentario
Tiempo de lectura: 2 minutos

En esta entrada se va a ver como hacer una tarea básica, la inicialización de arrays en Numpy con diferentes valores. Una tarea que puede ser tediosa si no se conocen y utilizan las herramientas que provee Numpy para ello. Además, estas son operaciones necesarias antes de comenzar con diferentes análisis de datos.

Inicialización de arrays con ceros con np.zeros()

Numpy dispone de una función con la que se pueden crear arrays de un tamaño dado inicializados con ceros. Esta función es np.zeros() y tiene la siguiente forma:

np.zeros(shape, dtype=float, order='C')

donde

  • shape: son las dimensiones del array Numpy que se desea construir. Si es un escalar creará un vector, mientras si se indica una tupla se obtendrá una matriz.
  • dtype: es un parámetro opcional en el que se indica el tipo de dato. Por defecto se utiliza el tipo de dato float.
  • order: es un parámetro opcional con el que se indica como se llenarán las matrices: F primero las filas o C primero las columnas. Siendo el valor por defecto C.

Así para crear una vector de 3 elementos con ceros se puede escribir.

import numpy as np

np.zeros(3)
array([0., 0., 0.])

Por otro lado, si lo que se desea es crear una matriz de ceros de 3 por 2 simplemente se tiene que escribir la siguiente línea de código.

np.zeros((3, 2))
array([[0., 0.],
       [0., 0.],
       [0., 0.]])

En este caso a la función se la ha pasado una tupla con las dimensiones de la matriz, por lo que el resultado es el esperado: una matriz.

Publicidad


Inicialización de arrays con unos con np.ones()

En otros casos puede ser que sea necesario crear matrices con ceros. En este caso la función que hay que utilizar es np.ones(), la que se utiliza igual que np.zeros(). Así para crear un vector de unos es necesario escribir algo como

np.ones(3)
array([1., 1., 1.])

Por otro lado, cuando se desea crear una matriz se tiene que escribir algo como.

np.ones((3, 2))
array([[1., 1.],
       [1., 1.],
       [1., 1.]])

Inicialización de arrays con otros valores

En muchas ocasiones puede que el valor por defecto con el que sea necesario inicializar los arrays no es ni cero ni uno. En tal caso se puede utilizar el método np.ones() para crear un array de unos y multiplicar este por el valor deseado. Por ejemplo, un array de 3 se puede obtener mediante.

np.ones(3) * 3
array([3., 3., 3.])

Conclusiones

En esta entrada se ha visto un par de funciones de Numpy con las que se simplificar el trabajo de crear arrays con un valor por defecto. np.zeros() para la creación de ceros y np.ones() para unos. La inicialización de arrays en Numpy con diferentes valores es una tarea habitual que se simplifica mucho con estas funciones. Siendo más estas funciones sencillas para la tarea que la creación se arrays similares a partir de listas o tuplas.

Imágenes: Pixabay (Marit Welker)

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 4 / 5. Votos emitidos: 4

Publicidad


Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicaciones relacionadas

  • Numpy básico: seleccionar elementos en un Array de Numpy
    Numpy básico: seleccionar elementos en un Array de Numpy
  • NumPy
    NumPy: Concatenar matrices en NumPy con np.concatenate()
  • Calculadora básica implementada con PySimpleGUI
    Creación básicas de GUI en Python con PySimpleGUI
  • Numpy básico: inicializar arrays de Numpy con un valor
    Numpy básico: inicializar arrays de Numpy con un valor
  • Numpy básico: Creación de un Array de Numpy a partir de una listas o tuplas
    Numpy básico: Creación de un Array de Numpy a partir de una…
  • Numpy básico
    Numpy básico

Publicado en: Python Etiquetado como: NumPy

Interacciones con los lectores

Comentarios

  1. daniel ramirez dice

    julio 4, 2021 a las 11:19 pm

    está bueno como parte 1.

    Responder

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad




Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Facebook
  • GitHub
  • Instagram
  • Pinterest
  • RSS
  • Twitter
  • Tumblr
  • YouTube

Publicidad

Entradas recientes

El método de Hare-Niemeyer y su implementación en Python

septiembre 29, 2023 Por Daniel Rodríguez

Redimensionar una partición de disco LVM con espacio no asignado en Linux

septiembre 27, 2023 Por Daniel Rodríguez

¿Cómo saber la versión de Pandas o cualquier otra librería en Python?

septiembre 25, 2023 Por Daniel Rodríguez

Publicidad

Es tendencia

  • ¿Cómo cambiar el nombre de las columnas en Pandas? publicado el mayo 6, 2019 | en Python
  • Seleccionar filas y columnas en Pandas con iloc y loc publicado el junio 21, 2019 | en Python
  • pandas Pandas: Cambiar los tipos de datos en los DataFrames publicado el julio 15, 2021 | en Python
  • Numpy básico: valores mínimos y máximos en arrays Numpy publicado el octubre 23, 2019 | en Python
  • Unir y combinar dataframes con pandas en Python publicado el septiembre 10, 2018 | en Python

Publicidad

Lo mejor valorado

4.9 (22)

Seleccionar filas y columnas en Pandas con iloc y loc

4.7 (12)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.6 (15)

Archivos JSON con Python: lectura y escritura

4.5 (10)

Diferencias entre var y let en JavaScript

4.3 (12)

Ordenación de diccionarios en Python mediante clave o valor

Publicidad

Comentarios recientes

  • Daniel Rodríguez en ¿Cómo eliminar columnas y filas en un dataframe pandas?
  • Miguel en ¿Cómo eliminar columnas y filas en un dataframe pandas?
  • alberto en Resolver problema de credenciales en Bitbucket
  • Pablo en Aplicar el método D’Hondt en Excel
  • Agapito en Creación de un EXE desde un archivo Python en Windows

Publicidad

Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2023 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto