• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • Excel
  • IA Generativa

Truco SQL: La distancia de Levenshtein en SQL Server

diciembre 11, 2020 Por Daniel Rodríguez 1 comentario
Tiempo de lectura: 3 minutos

En entradas anteriores hemos hablado de la búsqueda fonética que se puede realizar con las funciones nativas de SQL Server. Usando concretamente con el método SOUNDEX. Otro método que es de interés para buscar cadenas de texto con posibles errores es la distancia de Levenshtein. Un método que mide el número de ediciones necesarias para cambiar una cadena por otra. Por eso en esta entrada vamos a ver como implementar la distancia de Levenshtein en SQL Server.

La distancia de Levenshtein en SQL Server

Entre las funciones de SQL Server no existe una implementación de la distancia de Levenshtein en SQL Server, por lo que es necesaria implementarla. Afortunadamente existe una implementación que se puede encontrar en los foros del blog SQLTeam que reproducimos a continuación:

CREATE FUNCTION edit_distance(@s1 nvarchar(3999), @s2 nvarchar(3999))
RETURNS int
AS
BEGIN
 DECLARE @s1_len int, @s2_len int
 DECLARE @i int, @j int, @s1_char nchar, @c int, @c_temp int
 DECLARE @cv0 varbinary(8000), @cv1 varbinary(8000)

 SELECT
  @s1_len = LEN(@s1),
  @s2_len = LEN(@s2),
  @cv1 = 0x0000,
  @j = 1, @i = 1, @c = 0

 WHILE @j <= @s2_len
  SELECT @cv1 = @cv1 + CAST(@j AS binary(2)), @j = @j + 1

 WHILE @i <= @s1_len
 BEGIN
  SELECT
   @s1_char = SUBSTRING(@s1, @i, 1),
   @c = @i,
   @cv0 = CAST(@i AS binary(2)),
   @j = 1

  WHILE @j <= @s2_len
  BEGIN
   SET @c = @c + 1
   SET @c_temp = CAST(SUBSTRING(@cv1, @j+@j-1, 2) AS int) +
    CASE WHEN @s1_char = SUBSTRING(@s2, @j, 1) THEN 0 ELSE 1 END
   IF @c > @c_temp SET @c = @c_temp
   SET @c_temp = CAST(SUBSTRING(@cv1, @j+@j+1, 2) AS int)+1
   IF @c > @c_temp SET @c = @c_temp
   SELECT @cv0 = @cv0 + CAST(@c AS binary(2)), @j = @j + 1
 END

 SELECT @cv1 = @cv0, @i = @i + 1
 END

 RETURN @c
END

Código que implementa una nueva función llamada edit_distance que mide el mínimo número de ediciones necesarias para ir de una cadena a otra. Función que se puede emplear para encontrar registros que son similares e incluso ordenarlos en base al número de ediciones.

¡Nuevo video! Aprende a seleccionar datos en Pandas con .iloc y .loc
En Analytics Lane
¡Nuevo video! Aprende a seleccionar datos en Pandas con .iloc y .loc

Publicidad


Comprobación de los resultados

Una vez creada la función en nuestro SQL Server si se ejecuta el siguiente código se puede comprobar como en el primer caso devuelve 0, es la misma cadena, 1 en el segundo caso, se ha agregado el símbolo de admiración y 2 el último, se ha omitido una letra además de agregar el símbolo de admiración.

SELECT
 dbo.edit_distance('Hola Mundo', 'Hola Mundo'),
 dbo.edit_distance('Hola Mundo', 'Hola Mundo!'),
 dbo.edit_distance('Hola Mundo', 'Hola Mudo!')

Implementación en SQL Server

Ahora que sabemos como funciona el código se puede usar este en consultas de SQL Server para buscar cadenas que son similares, pero no iguales. Lo que nos permite buscar cadenas de texto con la posibilidad de tener errores tipográficos tanto en la cadena de búsqueda como en los registros de la base de datos.

SELECT id, first_name, dbo.edit_distance(first_name, 'Arly') FROM MOCK_DATA
WHERE dbo.edit_distance(first_name, 'Arly') < 2
ORDER BY dbo.edit_distance(first_name, 'Arly')

Esta consulta en nuestra base de datos nos devolverá además de Arly nombres de usuarios como Karly o Early, ambos con distancia igual a 1.

Publicidad


Conclusiones

En esta entrada hemos visto una función para aplicar la distancia de Levenshtein en SQL Server, algo que nos puede ayudar a mejorar las búsquedas de registros cuando se cometen errores tipográficos. La solución solamente funciona en SQL Server, pero si alguien conoce una implementación similar para otro motor base de datos puede indicarlo en los comentarios.

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicaciones relacionadas

  • ¡Nuevo video! Aprende a seleccionar datos en Pandas con .iloc y .loc
  • ¡Nuevo video! Aprende a eliminar filas y columnas en Pandas sin errores
  • Nuevo video en el canal: Cómo eliminar duplicados de una lista en Python
  • Nuevo video en YouTube: Trabajando con archivos JSON en Python
  • Nuevo video: Leer y guardar archivos Excel y CSV en Python
  • Nuevo video: cómo activar copiar y pegar en VirtualBox fácilmente
  • Cómo extender el tamaño de un disco en Rocky Linux 9 usando growpart y LVM
  • Curiosidad: El origen del análisis exploratorio de datos y el papel de John Tukey
  • Cómo calcular el tamaño de la muestra para encuestas

Publicado en: Herramientas Etiquetado como: SQL, SQL Server, Truco

Interacciones con los lectores

Comentarios

  1. Luis Tellez dice

    julio 14, 2021 a las 12:32 am

    Excelente aporte, yo uso soundex y rank

    Responder

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Cómo calcular el tamaño de la muestra para encuestas

septiembre 9, 2025 Por Daniel Rodríguez

Curiosidad: El origen del análisis exploratorio de datos y el papel de John Tukey

septiembre 4, 2025 Por Daniel Rodríguez

Cómo extender el tamaño de un disco en Rocky Linux 9 usando growpart y LVM

septiembre 2, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas publicado el mayo 10, 2019 | en Python
  • pandas Pandas: Obtener el nombre de las columnas y filas en Pandas publicado el diciembre 7, 2020 | en Python
  • pandas Pandas: Cómo iterar sobre las filas de un DataFrame en Pandas publicado el septiembre 13, 2021 | en Python
  • Sistema de ecuaciones Sistemas de ecuaciones lineales con numpy publicado el octubre 29, 2018 | en Python
  • Método del codo (Elbow method) para seleccionar el número óptimo de clústeres en K-means publicado el junio 9, 2023 | en Ciencia de datos

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes
  • Javier en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto