• Ir al contenido principal
  • Skip to secondary menu
  • Ir a la barra lateral primaria
  • Ir al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Noticias
    • Opinión
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Boletín
  • Contacto
  • Acerca de Analytics Lane
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • GearBest
      • GeekBuying
      • JoyBuy

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Criptografía
  • Python
  • Matlab
  • R
  • Julia
  • JavaScript
  • Herramientas
  • Opinión
  • Noticias

Introducción al Tidyverse

febrero 10, 2021 Por Daniel Rodríguez Dejar un comentario
Tiempo de lectura: 4 minutos

La preparación de los datos es una de las tareas más tediosas y frustrantes a las que nos enfrentamos los científicos de datos. En R tenemos una colección de paquetes que nos permite realizar estas tareas de una forma eficiente: el Tidyverse. En esta introducción a Tidyverse quiero explicar qué es el Tidyverse y cuales son los paquetes que los forman. Dejando para futuras entradas ejemplos de uso concretos de cada uno de los paquetes que forman parte del Tidyverse.

¿Qué es el Tidyverse?

El Tidyverse es una colección de paquetes de R que comparten una filosofía y API común para el tratamiento de datos de tipo tabular. A los que se les llama “tidy data” (datos ordenados).

La filosofía básica de las funciones de los paquetes del Tidyverse es recibir datos “tidy” y devolver como resultados datos del mismo tipo. Al ser los datos de entrada y salida de las funciones del mismo tipo es posible encadenar diferentes funciones para realizar así tareas complejas de una forma eficiente. Por ejemplo, filtrar, agrupar y obtener los estadistas de un conjunto de datos, tarea que se puede realizar con encadenando tres funciones diferentes.

Ventajas del Tidyverse

El uso del Tidyverse ofrece ciertas ventajas respecto a trabajar solamente con la base de R y algunos paquetes sueltos. Entre las que se puede destacar:

  1. Los paquetes del Tidyverse se basan en unas convenciones y flujo de trabajo estándar, por lo que una vez que se comprenden los fundamentos es más fácil aprender a usar nuevos paquetes e incluirlos en los flujos de trabajo existentes.
  2. Muchas estructuras de datos existentes en R se pueden utilizar tal cual en el Tidyverse (como los data.frame) o transformas a un formato adecuado. Lo que facilita el uso del código y procesos ya existentes.
  3. El uso de las tuberías (pipeline) hacen que cada paso de la manipulación y análisis de datos sea fácil de comprender, incluso para usuarios con poca experiencia en R y el Tidyverse.
  4. Las tuberías son un ejemplo fantástico de programación funcional, lo que permite comprender y aplicar este paradigma de programación.

Instalación en R

Para acceder al Tidyverse se pueden instalar cada unos de los paquetes que forman parte de este en nuestro entorno de R. Aunque es más fácil instalar el paquete Tidyverse y este ya instalar todos los paquetes necesarios. Tarea que se puede escribiendo el siguiente comando en una sesión de R:

install.packages("tidyverse")

Ahora se puede cargar el paquete en una sesión de R, lo que producirá una salida como la siguiente:

── Attaching packages ─────── tidyverse 1.3.0 ──
✓ ggplot2 3.3.3 ✓ purrr 0.3.4
✓ tibble 3.0.5 ✓ dplyr 1.0.3
✓ tidyr 1.1.2 ✓ stringr 1.4.0
✓ readr 1.4.0 ✓ forcats 0.5.0
── Conflicts ────────── tidyverse_conflicts() ──
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

No debemos preocuparnos por los conflictos ya que lo único que indica es que las funciones filtre() y lag() han reemplazados en la sesión a las de la base de R.

Puede que algunos de estos paquetes ya no suenan porque puede ser que ya llevamos tiempo utilizándolos sin saber que forma parte de Tidyverse. Algo que es bueno ya que nos indicará qué conocemos, por lo menos en parte, la filosofía de este conjunto de paquetes.

Los paquetes del Tidyverse

Tal como se ha visto en la sesión anterior al iniciar el Tidyverse en su versión actual se cargan ocho paquetes. Siendo estos:

  • ggplot2: permite crear elegantes representaciones de datos, ofreciendo la posibilidad de una personalización extrema de los gráficos.
  • tibble: implementación de una estructura de datos que es una versión moderna y mejorada de los tradicionales data.frame.
  • tidyr: permite realizar transformaciones eficientes de los datos, cómo puede ser la conversión de filas en columnas.
  • readr: facilita la lectura de archivos de texto plano, como es el caso de los archivos CSV.
  • purrr: facilita el trabajo tanto con vectores como con funciones.
  • dplyr: permite la manipulación de los conjuntos de datos utilizando para ello un lenguaje de acciones sobre los mismos. Facilitando las tareas más habituales como son la creación de variables, selección, filtrado, resumen de los datos.
  • stringr: facilita enormemente el trabajo con datos categóricos y cadenas de texto.
  • forcats: contiene múltiples funciones para trabajar con datos categóricos.

Además de estos se pueden encontrar en el CRAN más paquetes que comparten la misma filosofía. Entre los destinados a la lectura de datos podemos destacar: readxl (Excel) y haven (SAS o SPSS). Por otro lado, para la manipulación de datos podemos encontrar: lubridate (fechas), –hms (horas, minutos, segundos) –y blob (datos binarios).

Conclusiones

En esta entrada hemos visto una introducción al Tidyverse sabiendo lo que es. Dejando para futuras entradas ejemplos de uso de cada uno de estos paquetes.

Imagen de 139904 en Pixabay

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 5 / 5. Votos emitidos: 1

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Contenido relacionado

Archivado en:R Etiquetado con:Tidyverse

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad


Barra lateral primaria

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

¡Síguenos en redes sociales!

  • facebook
  • instagram
  • pinterest
  • tumblr
  • twitter
  • youtube
  • github
  • telegram
  • rss

Publicidad

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Entradas recientes

Epsilon-Greedy con decaimiento para un problema Bandido Multibrazo (Multi-Armed Bandit)

marzo 5, 2021 Por Daniel Rodríguez Dejar un comentario

Diferencias entre library() y require() en R

marzo 3, 2021 Por Daniel Rodríguez Dejar un comentario

Noticias

Disponible la versión 1.20.0 de NumPy

marzo 2, 2021 Por Daniel Rodríguez Dejar un comentario

Publicidad

Es tendencia

  • Seleccionar filas y columnas en Pandas con iloc y loc bajo Python
  • ¿Cómo eliminar columnas y filas en un dataframe pandas? bajo Python
  • Unir y combinar dataframes con pandas en Python bajo Python
  • ¿Cómo cambiar el nombre de las columnas en Pandas? bajo Python
  • Archivos Guardar y leer archivos CSV con Python bajo Python

Publicidad

Lo mejor valorado

5 (5)

Diferencias entre var y let en JavaScript

5 (6)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

5 (5)

Archivos JSON con Python: lectura y escritura

4.8 (6)

Seleccionar filas y columnas en Pandas con iloc y loc

4.2 (5)

Guardar y leer archivos Excel en Python

Publicidad

Comentarios recientes

  • egilda en Visualización de datos en Python con Seaborn
  • Sergio en ¿Cómo eliminar columnas y filas en un dataframe pandas?
  • javier en Uso de las f-string de Python para mejorar el formato de textos
  • Daniel Rodríguez en Guardar y leer archivos Excel en Python
  • franklin Chiluisa en Guardar y leer archivos Excel en Python

Publicidad

Footer

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Noticias
  • Opinión

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Lo más popular
  • Tienda

Programación

  • JavaScript
  • Julia
  • Matlab
  • Python
  • R

Tiendas Afiliadas

  • AliExpress
  • Amazon
  • BangGood
  • GearBest
  • Geekbuying
  • JoyBuy

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

2018-2021 Analytics Lane · Términos y condiciones · Política de Cookies · Política de Privacidad · Herramientas de privacidad · Contacto