• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • Excel
  • IA Generativa

Truco: obtener los mismos números aleatorios en Python y Matlab

junio 15, 2022 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 2 minutos

Cuando se intenta reproducir un proceso aleatorio en dos plataformas diferentes generalmente nos encontramos con el hecho de que los generadores de número aleatorios son diferentes. Por lo que, aunque la implementación sea equivalente, los resultados serán diferentes. Lo que hace puede hacer complicado probar las cosas. En el caso de Python y Matlab afortunadamente ambos implementan el mismo generador de números aleatorios, por lo que es posible conseguir la misma serie de números aleatorios en Python y Matlab fácilmente.

Fijar la semilla de número aleatorios en Python

Para fijar la semilla del generador de números aleatorios en Python con NumPy se debe usar la función np.random.seed() y para obtener una serie de valores np.random.random(). Siendo posible generar un vector, una matriz o cualquier tensor. Así para obtener una matriz de 3 por 3 se puede ejecutar el siguiente código.

import numpy as np

np.random.seed(10)
np.random.random((3,3))

Obteniéndose como resultado

array([[0.77132064, 0.02075195, 0.63364823],
       [0.74880388, 0.49850701, 0.22479665],
       [0.19806286, 0.76053071, 0.16911084]])

Publicidad


Fijar la semilla de número aleatorios en Matlab

En Matlab la función para fijar el generador de número aleatorios es rng(), solo que a diferencia de Python en este caso se puede seleccionar el generador. El usado por Python es Mersenne Twister, por lo que a Matlab se le debe indicar este, para lo que se debe pasar como segundo parámetro de la función la cadena 'twister'. Así para obtener la misma serie de números aleatorios se debería ejecutar el siguiente código

Tutorial de Mypy para Principiantes
En Analytics Lane
Tutorial de Mypy para Principiantes

rng(10, 'twister')
rand(3, 3)

Lo que genera

ans =

    0.7713    0.7488    0.1981
    0.0208    0.4985    0.7605
    0.6336    0.2248    0.1691

La misma serie, solo que en Python el llenado es por columnas mientras que en Matlab es por filas. Para obtener la misma matriz solo tendremos que transponer el resultado en uno de los dos casos. Por ejemplo, en Matlab (sin olvidar volver a fijar la semilla para obtener los resultados buscados).

rng(10, 'twister')
rand(3, 3)'

Comprobando que se obtiene el mismo resultado.

ans =

    0.7713    0.0208    0.6336
    0.7488    0.4985    0.2248
    0.1981    0.7605    0.1691

Conclusiones

En este caso hemos visto cómo se puede obtener la misma serie de número aleatorios en Python y Matlab, por lo que si se tiene que portar un algoritmo de una plataforma a otra se puede usar este truco para estar seguro que el código se ha portado correctamente.

Imagen de Theodor Moise en Pixabay

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicidad


Publicaciones relacionadas

  • Tutorial de Mypy para Principiantes
  • Semana sin nuevas publicaciones
  • Combinar gráficos con FacetGrid: Cómo analizar tendencias complejas en múltiples paneles con Seaborn
  • Introducción a igraph en R (Parte 6): Centralidad de Katz en grafos
  • Cómo modificar los mensajes de commit en Git
  • Optimización de memoria en Pandas: Usar tipos de datos personalizados para manejar grandes conjuntos de datos
  • Introducción a igraph en R (Parte 7): Centralidad de Bonacich
  • ¡Analytics Lane cumple siete años!
  • Sincronizar múltiples ejes con twinx(): Comparación de datos con diferentes escalas en un solo gráfico con Matplotlib

Publicado en: Matlab, Python Etiquetado como: Truco

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Variables globales en Python: Problemas y cómo evitarlos

mayo 12, 2025 Por Daniel Rodríguez

Los valores numéricos en los ordenadores: Entendiendo enteros, flotantes y más

mayo 9, 2025 Por Daniel Rodríguez

Introducción a igraph en R (Parte 8): PageRank

mayo 7, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas publicado el mayo 10, 2019 | en Python
  • Copiar y pegar Activar copiar y pegar en VirtualBox publicado el mayo 1, 2019 | en Herramientas
  • Seleccionar filas y columnas en Pandas con iloc y loc publicado el junio 21, 2019 | en Python
  • pandas Pandas: Cómo iterar sobre las filas de un DataFrame en Pandas publicado el septiembre 13, 2021 | en Python
  • Creación de documentos Word con Python publicado el septiembre 7, 2020 | en Python

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Tutorial de Mypy para Principiantes
  • Javier en Tutorial de Mypy para Principiantes
  • javier en Problemas con listas mutables en Python: Cómo evitar efectos inesperados
  • soldado en Numpy básico: encontrar la posición de un elemento en un Array de Numpy
  • plataformas AéReas en Numpy básico: encontrar la posición de un elemento en un Array de Numpy

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto