• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Herramientas
    • Método D’Hondt – Atribución de escaños
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • Excel
  • IA Generativa

Arquitecturas de almacenamiento de datos: Data Lake, Data Warehouse y Data Mart

febrero 24, 2023 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 3 minutos

Al hablar de arquitecturas de almacenamiento de datos en las organizaciones es habitual encontrarse con tres diferentes opciones: Data Lake, Data Warehouse y Data Mart. Aunque pudieran parecer diferentes nombres para una base de datos, no es así. Existen importantes diferencias conceptuales entre ellas que es importante conocer.

Data Lake

Un Data Lake (lago de datos) es un sistema de almacenamiento de datos que permite almacenar grandes cantidades de datos estructurados, semi-estructurados y no estructurados en su formato original. Centralizando el almacenamiento de datos sin la necesidad de estructurarlos previamente. Facilitando que estos puedan estar rápidamente disponibles para los diferentes usuarios de la empresa, permitiendo que se puedan desarrollar rápidamente análisis de datos o modelos de aprendizaje automático.

Publicidad


Data Warehouse

Un Data Warehouse (almacén de datos) es un sistema de gestión de datos diseñado para permitir la recopilación, integración, almacenamiento y análisis de grandes cantidades de datos empresariales estructurados, provenientes de diversas fuentes de datos. Por lo que en estos sistemas suele ser necesario procesar los datos antes de cargarlos. Así, al contar con los datos en un formato definido es más sencillo realizar análisis de los datos.

En las empresas, los Data Warehouses se utilizan para consolidar la información de diferentes sistemas transaccionales, como sistemas de ventas, finanzas, marketing, recursos humanos, entre otros, con el fin de crear una única fuente confiable con los datos empresariales.

Consistencia en nombres y orden en TypeScript: la base de un código mantenible aplicado a tslane
En Analytics Lane
Consistencia en nombres y orden en TypeScript: la base de un código mantenible aplicado a tslane

Data Mart

Un Data Mart es una base de datos departamental diseñada para servir a un área específica dentro de una empresa. Lo que hace que estos sistemas sean más pequeños y sencillos de mantener que un Data Warehouse.

La principal función de los Data Marts dentro de las empresas es proporcionar un acceso rápido y sencillo a los datos usados por un departamento. Permitiendo realizar de este modo consultas más rápidas y eficientes.

Publicidad


Diferencias entre las arquitecturas de almacenamiento de datos: Data Lake, Data Warehouse y Data Mart

En base a las definiciones que se han visto en la sección anterior podemos ver que existen importantes diferencias entre las tres arquitecturas. Un Data Lake es una arquitectura donde los datos no se encuentran estructurados, primando la agilidad a la hora de almacenar y poder recuperar los datos frente a que estos se almacenen con una estructura definida. Por lo que es habitual trabajar en estos casos con sistemas NoSQL. Por otro lado, un Data Warehouse es una arquitectura en la que prima almacenar los datos en un formato estructurado. Obteniendo un sistema menos ágil pero en el que es más sencillo realizar consultas. Siendo habitual construir estos sistemas con bases de datos SQL.

Finalmente, un Data Mart es un sistema más pequeño que un Data Warehouse centrado en un área específica del negocio. Por lo que suelen ser más fáciles de mantener y ofrecen un acceso más sencillo a los datos.

Conclusiones

En esta entrada se han visto las principales diferencias que existen entre las tres arquitecturas de almacenamiento de datos: Data Lake, Data Warehouse y Data Mart. Aunque pueden parecer diferentes nombres para una base de datos, no lo son. El Data Lake es un sistema no estructurado donde prima la agilidad. Un Data Mark es un sistema estructurado donde prima la organización del dato. Finalmente, un Data Mark es un sistema departamental.

Image by David Mark from Pixabay

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicidad


Publicaciones relacionadas

  • Consistencia en nombres y orden en TypeScript: la base de un código mantenible aplicado a tslane
  • Análisis de Redes con Python
  • Nuevo calendario de publicaciones: más calidad, mejor ritmo
  • Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Cómo eliminar las noticias en Windows 11 y recuperar tu concentración
  • Publicaciones de verano 2025: los trucos más populares, ahora en vídeo
  • Cómo enviar correos desde PowerShell utilizando Brevo: Guía paso a paso para automatizar tus notificaciones
  • Nueva herramienta disponible: Calculadora del Método D’Hondt para la atribución de escaños
  • Cómo enviar correos desde Python utilizando Brevo: Automatiza tus notificaciones con scripts eficientes

Publicado en: Ciencia de datos Etiquetado como: Bases de datos, Data Lake, Data Mart, Data Warehouse

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

¡Nuevo video! Gráficos de barras en Matplotlib sin complicarte

julio 17, 2025 Por Daniel Rodríguez

¡Nuevo video! Iterar filas en Pandas sin romperte la cabeza

julio 15, 2025 Por Daniel Rodríguez

¡Nuevo video! Encuentra la posición en listas como un PRO

julio 10, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Obtención de valores únicos de una columna con Pandas publicado el mayo 8, 2019 | en Python
  • Cómo encontrar la posición de elementos en una lista de Python publicado el abril 12, 2021 | en Python
  • Combinar varios archivos Jupyter Notebook en uno publicado el noviembre 21, 2022 | en Python
  • Gráficos de barras en Matplotlib publicado el julio 5, 2022 | en Python
  • pandas Pandas: Cómo iterar sobre las filas de un DataFrame en Pandas publicado el septiembre 13, 2021 | en Python

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes
  • Javier en Tutorial de Mypy para Principiantes
  • javier en Problemas con listas mutables en Python: Cómo evitar efectos inesperados
  • soldado en Numpy básico: encontrar la posición de un elemento en un Array de Numpy

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto