
Al realizar análisis de datos en Python, una de las tareas más habituales es el cálculo de estadísticas como la media. Sin embargo, cuando la lista de datos está vacía, funciones como np.mean()
de NumPy pueden devolver NaN
, lo que puede provocar errores al usar los resultados en cálculos posteriores. En esta entrada, aprenderás cómo evitar este problema para garantizar unos resultados precisos y coherentes en cualquier escenario.
El problema: calcular la media en listas vacías
Imagina que estás analizando las ventas diarias de un negocio. Algunos días registran ventas, pero otros no, como los festivos en una tienda física que suele cerrar estos días. Si intentamos calcular la media de cada día utilizando NumPy, podríamos obtener valores inesperados:
import numpy as np ventas_diarias = [ [200, 130, 300], # Día con ventas [], # Día sin ventas [400, 250] # Otro día con ventas ] promedios = [np.mean(ventas) for ventas in ventas_diarias] print(promedios)
La salida esperada en este caso es:
[210,0, nan, 325.0]
El valor NaN
indica que la función np.mean()
de NumPy no puede calcular la media de una lista vacía. Este resultado puede afectar usos posteriores de este resultado, como si se desea calcular la desviación estándar o crear una gráfica para visualizar los resultados, generando inconsistencias en el análisis.

Además de esto, también se mostrará un mensaje de advertencia en la terminal como el siguiente, indicando que algo ha salido mal.
RuntimeWarning: invalid value encountered in scalar divide
ret = ret.dtype.type(ret / rcount)
Solución 1: Verificar si la lista está vacía
La mejor forma de evitar este problema es asegurarnos de que la lista contenga datos antes de calcular la media. Si la lista está vacía, podemos devolver 0
u otro valor que sea adecuado para nuestro análisis:
import numpy as np ventas_diarias = [ [200, 130, 300], [], [400, 250] ] promedios = [np.mean(ventas) if ventas else 0 for ventas in ventas_diarias] print(promedios)
Ahora la salida que se obtiene será la siguiente:
[210.0, 0, 325.0]
De este modo, evitamos la aparición de valores NaN
y se garantiza que los cálculos sean más estables y predecibles.
Solución 2: Eliminar valores NaN de la lista de resultados
En lugar de reemplazar NaN
con un valor, otra opción es eliminar los registros inválidos antes de realizar otros cálculos con ellos. Esto se puede hacer con el siguiente código:
import numpy as np ventas_diarias = [ [200, 130, 300], [], [400, 250] ] promedios = [np.mean(ventas) for ventas in ventas_diarias] # Filtrar valores NaN promedios_sin_nan = [p for p in promedios if not np.isnan(p)] print(promedios_sin_nan)
Para obtener el siguiente resultado:
[210.0, 325.0]
Esta opción es útil si se desea excluir de los análisis posteriores los días sin ventas, como el cálculo de la desviación estándar.
Conclusiones
El manejo adecuado de listas vacías en Python es crucial para evitar errores en el análisis de datos. Al calcular estadísticas como la media, es fundamental verificar la existencia de datos antes de utilizar funciones como np.mean()
, evitando así valores NaN
que pueden comprometer la precisión de los resultados.
Las estrategias presentadas en esta entrada permiten abordar este problema de manera efectiva:
- Sustituir NaN por un valor predeterminado: útil cuando se desea evitar valores vacíos en análisis posteriores.
- Filtrar NaN de los resultados: recomendable cuando los valores vacíos deben ser excluidos del análisis posterior.
Al implementar estas técnicas, podemos garantizar que nuestros cálculos sean robustos, precisos y estén libres de errores inesperados, asegurando que los análisis de datos sean confiables en cualquier contexto.
Deja una respuesta