Al enfrentarse a la situación de crear un modelo de clasificación es habitual que las clases no se encuentran balanceadas. Esto es, el número de registros para una de las clases es inferior al resto. Cuando el desequilibrio es pequeño, uno a dos, esto no supone un problema, pero cuando es grande es un problema para la mayoría de los modelos de clasificación. Esta situación se … [Leer más...] acerca de El problema de desequilibrio de clases en conjuntos de datos de entrenamiento
Machine learning
Machine Learning (Aprendizaje Automático o Aprendizaje Máquina) es la rama de la inteligencia artificial que estudia cómo construir sistemas que puedan aprender automáticamente de la experiencia. Esto es, sistemas que puedan realizar mejores predicciones o tomar mejores decisiones a medida que aumenta su experiencia.
Los algoritmos de Machine Learning se dividen en tres categorías en función de los datos utilizados: aprendizaje supervisado, aprendizaje no supervisado y aprendizaje por refuerzo. En aprendizaje supervisado se utilizan conjuntos de datos, durante el proceso de entrenamiento, en los que se conoce el valor que debe reproducir el modelo. Pudiéndose medir el desempeño de los modelos en base a lo bien que reproduce posteriormente estos valores en otros conjuntos de datos. Tal como se puede intuir del nombre, en el caso de aprendizaje no supervisado, no se busca que los modelos reproducen un valor concreto. Siendo el objetivo de estos modelos identificar patrones que permitan separar y clasificar los datos en diferentes grupos. Por otro lado, en aprendizaje por refuerzo se busca la creación de agentes que pueden realizar acciones sobre un entorno. Siendo este un aprendizaje completamente diferente a los dos anteriores.
Implementación de una red neuronal desde cero
En esta entrada se va a implementar una red neuronal desde cero, sin utilizar librerías como Theano (http://deeplearning.net/software/theano/) o TensorFlow (https://www.tensorflow.org). La finalidad de este ejercicio poder comprender mejor cómo funcionan las redes neuronales antes de implementar soluciones más complejas mediante alguna librerías.Fundamentos de la … [Leer más...] acerca de Implementación de una red neuronal desde cero

