• Ir al contenido principal
  • Skip to secondary menu
  • Ir a la barra lateral primaria
  • Ir al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Noticias
    • Opinión
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Boletín
  • Contacto
  • Acerca de Analytics Lane
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • GearBest
      • GeekBuying
      • JoyBuy

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Criptografía
  • Python
  • Matlab
  • R
  • Julia
  • JavaScript
  • Herramientas
  • Opinión
  • Noticias

¿Qué es el Aprendizaje Automático?

agosto 22, 2018 Por Daniel Rodríguez Dejar un comentario

Aprendizaje Automático

El Aprendizaje Automático es el área de la Inteligencia Artificial cuyo objetivo es desarrollar técnicas que permitan a los ordenadores aprender patrones a partir de conjuntos de datos sin la necesidad de programar estos explícitamente.

Introducción al aprendizaje automático

La utilización del aprendizaje automático representa un cambio frente al desarrollo clásico de programas. En un desarrollo clásico el programador conoce las reglas que se han de aplicar a los datos para obtener las respuestas. Siendo su trabajo implementar estos algoritmos, como se muestra en el siguiente esquema.

Esquema de programación clásica

Por otro lado, en aprendizaje automático se comienza con conjuntos de datos de ejemplo, los cuales pueden contener o no la respuesta esperada, para obtener los patrones que se ocultan en ellos. Una vez descubiertos se pueden utilizar para tomar mejores decisiones en el futuro. El objetivo principal es permitir que los ordenadores puedas aprender automáticamente sin intervención humana o asistencia. Ajustando sus acciones en consecuencia. El esquema del aprendizaje automático se muestra en el siguiente esquema.

Esquema de aprendizaje automático

Los algoritmos de aprendizaje automático se clasifican generalmente en dos categorías: el aprendizaje supervisado y el aprendizaje no supervisado.

Algoritmos de aprendizaje supervisado

En los algoritmos de aprendizaje supervisado el entrenamiento se realiza utilizando conjuntos de datos etiquetados con la respuesta que se desea predecir. El objetivo del algoritmo es inducir las reglas con las que se consiguen los resultados esperados en el conjunto de datos de entrenamiento. Las reglas inferidas se pueden utilizar posteriormente en nuevos conjuntos de datos para realizar predicciones. El algoritmo también puede comparar los resultados de las reglas con los valores correctos para identificar los errores y modificar las reglas en consecuencia.

Algoritmos de aprendizaje no supervisado

Por el contrario, los algoritmos de aprendizaje no supervisado se utilizan cuando los conjuntos de datos utilizados en el entrenamiento no contienen una etiqueta con la respuesta que se desea predecir. Es decir, el aprendizaje no supervisado estudia cómo inferir reglas para describir las estructuras ocultas a partir de datos no etiquetados. En estos casos los algoritmos no encuentran un resultado correcto, ya que no existe. Pero analizan los datos para descubrir las estructuras ocultas que se ocultan en los datos.

Existen otros algoritmos en los que se utilizan conjuntos de datos etiquetados y no etiquetados para el entrenamiento. Estos son los algoritmos de aprendizaje semi-supervisado que se ubican en un punto intermedio entre los dos anteriores. La utilización de estos métodos puede mejorar considerablemente la precisión de aprendizaje. Por lo general, el aprendizaje semi-supervisado se emplea cuando el etiquetado de los datos requiere un esfuerzo adicional a la obtención de los datos sin etiquetar.

Algoritmos de aprendizaje por refuerzo

El aprendizaje por refuerzo son algoritmos de aprendizaje que interactúa con su entorno realizando acciones y recibiendo recompensas o castigos. La búsqueda de las soluciones mediante prueba y error y la recompensa son las características más relevantes del aprendizaje de refuerzo. Estos algoritmos permiten que las maquinas determinen automáticamente las acciones que permiten maximizar la función de utilizada, la recompensa, en un entorno especifico. Para ello es necesario una retroalimentación mediante recompensas para que el algoritmo puede identificar las mejores selecciones.

Los algoritmos de aprendizaje por refuerzo son no supervisados, ya que los datos utilizados en el entrenamiento no se encuentran etiquetados.

Conclusiones

Los algoritmos de aprendizaje automático permiten que los ordenadores puedan obtener reglas a partir de conjuntos de datos de conjuntos de datos. En esta entrada se ha visto lo qué es el aprendizaje automático y las principales clases de algoritmo que se utilizan en ellos.

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Contenido relacionado

Archivado en:Ciencia de datos Etiquetado con:Machine learning

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad


Barra lateral primaria

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

¡Síguenos en redes sociales!

  • facebook
  • github
  • telegram
  • pinterest
  • rss
  • tumblr
  • twitter
  • youtube

Publicidad

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Entradas recientes

Usar dispositivos USB en VirtualBox

enero 15, 2021 Por Daniel Rodríguez Dejar un comentario

Eliminar elementos en matrices de Matlab

enero 13, 2021 Por Daniel Rodríguez Dejar un comentario

NumPy

NumPy: Crear matrices vacías en NumPy y adjuntar filas o columnas

enero 11, 2021 Por Daniel Rodríguez Dejar un comentario

Publicidad

Es tendencia

  • ¿Cómo eliminar columnas y filas en un dataframe pandas? bajo Python
  • Unir y combinar dataframes con pandas en Python bajo Python
  • Seleccionar filas y columnas en Pandas con iloc y loc bajo Python
  • Excel en Python Guardar y leer archivos Excel en Python bajo Python
  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas bajo Python

Publicidad

Lo mejor valorado

5 (3)

Ordenar una matriz en Matlab en base a una fila o columna

5 (3)

Automatizar el análisis de datos con Pandas-Profiling

5 (5)

Diferencias entre var y let en JavaScript

5 (6)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

5 (3)

Unir y combinar dataframes con pandas en Python

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Calculadora de probabilidades de ganar a la lotería
  • abel en Calculadora de probabilidades de ganar a la lotería
  • David Arias en Diferencias entre regresión y clasificación en aprendizaje automático
  • Juan Aguilar en Archivos JSON con Python: lectura y escritura
  • Camilo en Contar palabras en una celda Excel

Publicidad

Footer

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Noticias
  • Opinión

Programación

  • JavaScript
  • Julia
  • Matlab
  • Python
  • R

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Lo más popular
  • Tienda

Tiendas Afiliadas

  • AliExpress
  • Amazon
  • BangGood
  • GearBest
  • Geekbuying
  • JoyBuy

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Tiendas afiliadas

Ayúdanos realizando tus compras sin coste adicional con los enlaces de la tienda. ¡Gracias!

Amazon

2018-2020 Analytics Lane · Términos y condiciones · Política de Cookies · Política de Privacidad · Herramientas de privacidad · Contacto