• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • IA Generativa
  • Python
  • Pandas
  • NumPy
  • Excel
  • Matlab

Recuperación de las semillas empleadas en procesos aleatorios

mayo 18, 2018 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 2 minutos

Semillas

Al realizar procesos en lo que se utilizan número aleatorios es una buena práctica fijar la semilla utilizada para garantizar que se puedan reproducir los resultados. En R esto se suele realizar mediante la instrucción set.seed(). Una alternativa a esta práctica puede ser guardar la semilla empleada antes de inicial el proceso y posteriormente recuperarla cuando sea necesario reproducirlo. El valor de la semilla que empleará R para la generación del siguiente número aleatorio se encuentra almacenado en la variable de entorno .Random.seed.

Planteamiento del problema

El procedimiento que se ha de utilizar para recuperar las simulaciones es bastante sencillo, antes de lanzar un proceso en el que se utilicen número aleatorios (generado por el generador de R) se carga en un variable el estado del generador de números aleatorios. En el caso de que sea necesario reproducir los resultados se puede recuperar el estado volviendo a asignar el estado guardado en la variable de entorno.

A modo de ejemplo se ruede realizar una simulación simple. Se pueden generar 100 número aleatorios, sumar su valor y repetir el proceso varias veces con diferentes semillas, esto se puede hacer con siguiente código:

total <- rep(NA, 25)
seeds <- list(NULL)

for(i in 1:25) {
 seeds <- .Random.seed
 total <- sum(sum(runif(100)))
}

En el código se generan 25 veces 10 número aleatorios que se guardan en el vector total, por otro lado, las semillas se guardan en la lista seeds. Ahora para comprobar que se pueden reproducir los resultados simplemente se ha de volver a simular con la semilla adecuada. Esto se puede comprobar con el código:

Cómo calcular el tamaño de la muestra para encuestas
En Analytics Lane
Cómo calcular el tamaño de la muestra para encuestas

for(i in 25:1) {
 .Random.seed <- seeds[[i]]
 stopifnot(total[i] == sum(sum(runif(100))))
}

Al ejecutar estas líneas en el caso de que no se cumplan las igualdades la función stopifnot() detendría la ejecución del programa mediante una llamada a la función stop(), cosa que no sucede. Lo que sí sucede por ejemplo en el siguiente caso:

stopifnot(total[1] == sum(sum(runif(100))))

En donde se genera el siguiente error:

Error: total[1] == sum(sum(runif(100))) is not TRUE

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicidad


Publicaciones relacionadas

  • Cómo calcular el tamaño de la muestra para encuestas
  • Curiosidad: La Ley de Twyman y la trampa de los datos “interesantes”
  • Copias de seguridad automáticas en SQL Server con rotación de archivos
  • Curiosidad: La Paradoja de Simpson, o por qué no siempre debes fiarte de los promedios
  • Error npm ERR! code EACCES al instalar paquetes en Node.js: Cómo solucionarlo paso a paso
  • Curiosidad: La maldición de la dimensionalidad, o por qué añadir más datos puede empeorar tu modelo
  • ¿Está concentrado el MSCI World? Un análisis con Gini, Lorenz y leyes de potencia
  • Curiosidad: ¿Por qué usamos p < 0.05? Un umbral que cambió la historia de la ciencia
  • Programador de tareas de Windows: Guía definitiva para automatizar tu trabajo (BAT, PowerShell y Python)

Publicado en: R

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Programador de tareas de Windows: Guía definitiva para automatizar tu trabajo (BAT, PowerShell y Python)

octubre 7, 2025 Por Daniel Rodríguez

Curiosidad: ¿Por qué usamos p < 0.05? Un umbral que cambió la historia de la ciencia

octubre 2, 2025 Por Daniel Rodríguez

¿Está concentrado el MSCI World? Un análisis con Gini, Lorenz y leyes de potencia

septiembre 30, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Copiar y pegar Activar copiar y pegar en VirtualBox publicado el mayo 1, 2019 | en Herramientas
  • Gráficos de barras en Matplotlib publicado el julio 5, 2022 | en Python
  • Cómo solucionar problemas de red en VirtualBox: Guía completa publicado el junio 11, 2025 | en Herramientas
  • Diferencias entre CPU, GPU, TPU y NPU publicado el abril 19, 2023 | en Herramientas
  • Ordenadores para Machine Learning e IA 2025: Guía para elegir el equipo ideal publicado el enero 17, 2025 | en Reseñas

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto