• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • Python
  • Pandas
  • NumPy
  • Matlab
  • Julia
  • JavaScript
  • Excel

Recuperación de las semillas empleadas en procesos aleatorios

mayo 18, 2018 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 2 minutos

Semillas

Al realizar procesos en lo que se utilizan número aleatorios es una buena práctica fijar la semilla utilizada para garantizar que se puedan reproducir los resultados. En R esto se suele realizar mediante la instrucción set.seed(). Una alternativa a esta práctica puede ser guardar la semilla empleada antes de inicial el proceso y posteriormente recuperarla cuando sea necesario reproducirlo. El valor de la semilla que empleará R para la generación del siguiente número aleatorio se encuentra almacenado en la variable de entorno .Random.seed.

Planteamiento del problema

El procedimiento que se ha de utilizar para recuperar las simulaciones es bastante sencillo, antes de lanzar un proceso en el que se utilicen número aleatorios (generado por el generador de R) se carga en un variable el estado del generador de números aleatorios. En el caso de que sea necesario reproducir los resultados se puede recuperar el estado volviendo a asignar el estado guardado en la variable de entorno.

A modo de ejemplo se ruede realizar una simulación simple. Se pueden generar 100 número aleatorios, sumar su valor y repetir el proceso varias veces con diferentes semillas, esto se puede hacer con siguiente código:

total <- rep(NA, 25)
seeds <- list(NULL)

for(i in 1:25) {
 seeds <- .Random.seed
 total <- sum(sum(runif(100)))
}

En el código se generan 25 veces 10 número aleatorios que se guardan en el vector total, por otro lado, las semillas se guardan en la lista seeds. Ahora para comprobar que se pueden reproducir los resultados simplemente se ha de volver a simular con la semilla adecuada. Esto se puede comprobar con el código:

Publicidad


for(i in 25:1) {
 .Random.seed <- seeds[[i]]
 stopifnot(total[i] == sum(sum(runif(100))))
}

Al ejecutar estas líneas en el caso de que no se cumplan las igualdades la función stopifnot() detendría la ejecución del programa mediante una llamada a la función stop(), cosa que no sucede. Lo que sí sucede por ejemplo en el siguiente caso:

stopifnot(total[1] == sum(sum(runif(100))))

En donde se genera el siguiente error:

Error: total[1] == sum(sum(runif(100))) is not TRUE

¿Te ha parecido de utilidad el contenido?

¡Puntúalo entre una y cinco estrellas!

Puntuación promedio 0 / 5. Votos emitidos: 0

Ya que has encontrado útil este contenido...

¡Síguenos en redes sociales!

¡Siento que este contenido no te haya sido útil!

¡Déjame mejorar este contenido!

Dime, ¿cómo puedo mejorar este contenido?

Publicaciones relacionadas

  • Configurar la máquina virtual de Java en R
    Configurar la máquina virtual de Java en R
  • sport
    Cómo usar código C++ en R
  • luggage
    Pruebas avanzadas con testthat (Creación de paquetes…
  • Paquetes
    Creación de un CRAN corporativo
  • Database
    Uso de JDBC en R para conexión a base de datos
  • apgar-dock
    Crear imagen Docker con Shiny Server

Publicado en: R

Interacciones con los lectores

Deja una respuesta Cancelar la respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

I accept the Terms and Conditions and the Privacy Policy

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

Publicidad





Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Facebook
  • GitHub
  • Instagram
  • Pinterest
  • RSS
  • Twitter
  • Tumblr
  • YouTube

Publicidad

Entradas recientes

Tutorial básico de Traceroute

diciembre 8, 2023 Por Daniel Rodríguez

Usar el depurador de Visual Studio Code con Jest

diciembre 6, 2023 Por Daniel Rodríguez

Análisis de datos con GPT en Pandas

diciembre 4, 2023 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas publicado el mayo 10, 2019 | en Python
  • Seleccionar filas y columnas en Pandas con iloc y loc publicado el junio 21, 2019 | en Python
  • Unir y combinar dataframes con pandas en Python publicado el septiembre 10, 2018 | en Python
  • pandas Pandas: Leer archivos CSV con diferentes delimitadores en Pandas. publicado el noviembre 30, 2020 | en Python
  • ¿Cómo eliminar columnas y filas en un dataframe pandas? publicado el marzo 25, 2019 | en Python

Publicidad

Lo mejor valorado

4.9 (22)

Seleccionar filas y columnas en Pandas con iloc y loc

4.7 (12)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.6 (15)

Archivos JSON con Python: lectura y escritura

4.5 (10)

Diferencias entre var y let en JavaScript

4.4 (13)

Ordenación de diccionarios en Python mediante clave o valor

Publicidad

Comentarios recientes

  • Anto en Rendimiento al iterar en JavaScript sobre un vector
  • Daniel Rodríguez en Creación de un certificado Let’s Encrypt en Windows con Win-Acme
  • Guillermo en Creación de un certificado Let’s Encrypt en Windows con Win-Acme
  • Daniel Rodríguez en ¿Cómo eliminar columnas y filas en un dataframe pandas?
  • Miguel en ¿Cómo eliminar columnas y filas en un dataframe pandas?

Publicidad

Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2023 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto