La revolución tecnológica impulsada por la inteligencia artificial (IA) está remodelando industrias enteras, y el sector bancario no es una excepción. En el corazón de esta transformación se encuentran los Modelos Avanzados de Lenguaje (LLM, por sus siglas en inglés, Large Language Models). Estas herramientas, como GPT (Generative Pre-trained Transformer), representan una … [Leer más...] acerca de Inteligencia artificial generativa en banca: Cinco aplicaciones que están transformando el sector bancario
Ciencia de datos
La ciencia de datos es un área de conocimiento interdisciplinar en el cual se utilizan procesos para recopilar, preparar, analizar, visualizar y modelar datos para extraer todo su valor. Pudiéndose emplear tanto con conjuntos de datos estructurados como no estructurados. Los científicos de datos, los profesionales de esta área deben poseer grandes conocimientos de estadística e informática. Además de conocimiento de los procesos que están modelando.
Con la ciencia de datos es posible revelar tendencias y obtener información para que tanto las empresas como las instituciones puedan tomar mejores decisiones. Basando estas así en conocimiento validado no en intuiciones.
Las publicaciones de esta sección abarca diferentes temas de áreas como la estadística, la minería de datos, el aprendizaje automático y la analítica predictiva.
Entendiendo el margen de error de las encuestas: Cálculo, interpretación y limitaciones
Las encuestas son posiblemente la mejor herramienta que existe para obtener información sobre las opiniones, preocupaciones y características de la población. Evitando tener que preguntar a toda la población sobre los diferentes temas de interés, lo que no es práctico. Por eso, son ampliamente utilizadas en investigaciones de mercado, estudios de opinión pública y elecciones, … [Leer más...] acerca de Entendiendo el margen de error de las encuestas: Cálculo, interpretación y limitaciones
Aprendizaje Semisupervisado
En el campo del Aprendizaje Automático (Machine Learning) los enfoques de aprendizaje se suelen dividir en tres: aprendizaje supervisado, aprendizaje no supervisado y aprendizaje por refuerzo. Siendo los dos primeros los más utilizados. En el aprendizaje supervisado se usan conjuntos de datos etiquetados para entrenar modelos que buscan identificar estas etiquetas. Mientras que … [Leer más...] acerca de Aprendizaje Semisupervisado
Mejores extensiones de VS Code para científicos de datos
Visual Studio Code (VS Code) es uno de los editores de código más populares en la actualidad tanto entre los desarrolladores como científicos de datos. Lo que es debido a que es gratuito, su flexibilidad y capacidad de personalización. Pero si algo se puede destacar de VS Code es su marketplace de extensiones, con las que se puede adaptar el editor para casi cualquier … [Leer más...] acerca de Mejores extensiones de VS Code para científicos de datos
Entendiendo la validación cruzada: Selección de la profundidad óptima en un árbol de decisión
En aprendizaje automático uno de los mayores desafíos es entrenar modelos que funcionen bien sobre datos nuevos. Evitando que el sobreajuste que un modelo es bueno cuando en realidad solo está memorizado las predicciones. En este punto es cuando entra en juego la técnica de la validación cruzada. En esta entrada, se explicará por qué la validación cruzada es importante, y cómo … [Leer más...] acerca de Entendiendo la validación cruzada: Selección de la profundidad óptima en un árbol de decisión
Los mejores conjuntos de datos para Machine Learning
Disponer de conjuntos de datos de calidad es crucial para poder construir modelos de aprendizaje automático (Machine Learning) robustos, precisos y funcionales. Como se suele decir “Basura entra, basura sale” (Garbage In-Garbage Out). Esto es algo que se nota especialmente cuando se está aprendiendo a crear modelos de aprendizaje automático, cuando no se dispone de datos reales … [Leer más...] acerca de Los mejores conjuntos de datos para Machine Learning
Detectando anomalías con Angle-Based Outlier Detection (ABOD)
La detección de anomalías (también conocidos por su nombre en inglés outliers) son métodos de aprendizaje automático claves en múltiples sectores. Facilitando la identificación de eventos como fraudes, errores en los datos o eventos raros. Entre los métodos existentes para ello, Angle-Based Outlier Detection (ABOD) destaca con un enfoque único al usar los ángulos entre los … [Leer más...] acerca de Detectando anomalías con Angle-Based Outlier Detection (ABOD)
Eliminación de la multicolinealidad con PCA en modelos de regresión
En aprendizaje automático, la multicolinealidad es un problema habitual que suele afectar a la precisión y la interpretabilidad de los modelos de regresión. Lo que reduce la utilidad de estos. La multicolinealidad aparece cuando dos o más variables independientes están altamente correlacionadas, dificultando determinar el impacto individual de cada una de estas variables en la … [Leer más...] acerca de Eliminación de la multicolinealidad con PCA en modelos de regresión
Entendiendo las Cópulas en estadística
Para muchas aplicaciones puede ser necesario explicar cómo se relacionan entre sí diferentes variables aleatorias de cara a comprender en detalle fenómenos complejos. Algo que es clave para la toma de decisiones informadas. Para lo que la estadística ofrece herramientas como las Cópulas. Las cópulas son unas herramientas matemáticas con las que es posible modelar la estructura … [Leer más...] acerca de Entendiendo las Cópulas en estadística
Explorando Clustering-Based Local Outlier Factor (CBLOF) para la detección de anomalías
La detección de anomalías es una parte del aprendizaje automático resulta clave en múltiples aplicaciones. Poder saber qué registros son atípicos de un conjunto de datos resulta fundamental en sectores como la seguridad informática, el mantenimiento predictivo o la detección de fraudes. Uno de los algoritmos que se pueden emplear en estos casos es Clustering-Based Local Outlier … [Leer más...] acerca de Explorando Clustering-Based Local Outlier Factor (CBLOF) para la detección de anomalías
Análisis de correlación para modelos de regresión: Cómo eliminar la multicolinealidad y mejorar la robustez
Los modelos de regresión son una de las técnicas estadísticas más utilizadas para comprender y predecir las relaciones entre las variables. Siendo ampliamente utilizadas en análisis de datos y aprendizaje automático. Sin embargo, cuando las variables que se desean utilizar para la construcción del modelo están altamente correlacionadas, aparece el problema de la … [Leer más...] acerca de Análisis de correlación para modelos de regresión: Cómo eliminar la multicolinealidad y mejorar la robustez
La correlación de Pearson
La correlación de Pearson es una medida estadística que evalúa la relación lineal entre dos variables continuas. Su valor puede variar entre -1 y 1, donde -1 indica una correlación negativa perfecta, 0 ninguna correlación, y 1 una correlación positiva perfecta. Siendo una herramienta fundamental en el campo de la estadística para determinar la fuerza y la dirección de la … [Leer más...] acerca de La correlación de Pearson











