Uno de los mayores problemas a la hora de trabajar con el algoritmo de k-means es la necesidad de conocer el número de clústeres en los que se debe dividir el conjunto de datos. Para lo que existen diferentes métodos como el del codo, la Silhouette, Gap Statistics o Calinski-Harabasz. En esta ocasión se va a ver otro método bastante popular, el braseado en el índice de … [Leer más...] acerca de El índice de Davies-Bouldinen para estimar los clústeres en k-means e implementación en Python
Ciencia de datos
La ciencia de datos es un área de conocimiento interdisciplinar en el cual se utilizan procesos para recopilar, preparar, analizar, visualizar y modelar datos para extraer todo su valor. Pudiéndose emplear tanto con conjuntos de datos estructurados como no estructurados. Los científicos de datos, los profesionales de esta área deben poseer grandes conocimientos de estadística e informática. Además de conocimiento de los procesos que están modelando.
Con la ciencia de datos es posible revelar tendencias y obtener información para que tanto las empresas como las instituciones puedan tomar mejores decisiones. Basando estas así en conocimiento validado no en intuiciones.
Las publicaciones de esta sección abarca diferentes temas de áreas como la estadística, la minería de datos, el aprendizaje automático y la analítica predictiva.
Cuatro aplicaciones de la Inteligencia Artificial en Política
Aunque la política es una actividad puramente humana, el rápido avance de la inteligencia artificial (IA) también ha traído aplicaciones a esta área. Lo que ha dejado claro la IA es su capacidad para mejorar la eficiencia de los procesos, realizar análisis de datos sofisticados y ofrecer soluciones a problemas complejos. Necesidades que no escapan a la política. En este ensayo … [Leer más...] acerca de Cuatro aplicaciones de la Inteligencia Artificial en Política
Número óptimo de clústeres con Silhouette e implementación en Python
La Silhouette es una métrica que permite evaluar la calidad de los clústeres generados mediante algoritmos de clustering basados en la distancia euclídea. Como es el caso de k-means. Cuantificando la relación que existe entre la separación de los diferentes clústeres y la similitud entre los puntos de un mismo clúster en un valor que varía entre -1 y 1. Los valores cercanos a 1 … [Leer más...] acerca de Número óptimo de clústeres con Silhouette e implementación en Python
Cuatro aplicaciones de la Inteligencia Artificial en el Deporte
Es obvio que la inteligencia artificial (IA) ha experimentado un crecimiento exponencial en las últimas décadas. Abarcando sus casos de uso una amplia variedad de áreas. El deporte no es la excepción, y la IA se ha convertido en una herramienta clave en el ámbito deportivo, ayudando a mejorar el rendimiento de los deportistas, analizar el juego y ayudando en el desarrollo de … [Leer más...] acerca de Cuatro aplicaciones de la Inteligencia Artificial en el Deporte
Identificar el número de clústeres con Calinski-Harabasz en k-means e implementación en Python
Cuando se desea realizar análisis de clúster uno de los algoritmos más utilizados es k-means. Lo que se explica por los buenos resultados que suele ofrecer con la mayoría de los conjuntos de datos y su simplicidad. Pero tiene un problema, es necesario conocer el número de clústeres en los que se debe dividir el conjunto de datos. Por lo que existen diferentes métodos como el … [Leer más...] acerca de Identificar el número de clústeres con Calinski-Harabasz en k-means e implementación en Python
Cuatro aplicaciones de la Inteligencia Artificial en Sanidad
La inteligencia artificial (IA) está transformando la forma en que se abordan los problemas de salud. Produciendo importantes avances en el diagnóstico, tratamiento y prevención de enfermedades. En esta publicación vamos a mostrar algunas de las principales aplicaciones de la inteligencia artificial en sanidad.Diagnóstico y detección temprana de enfermedadesLa IA se … [Leer más...] acerca de Cuatro aplicaciones de la Inteligencia Artificial en Sanidad
Método del codo (Elbow method) para seleccionar el número óptimo de clústeres en K-means
Posiblemente la técnica más utilizada para identificar el número óptimo de clústeres en los que dividir un conjunto de datos con K-means sea el método del codo (elbow method). Lo que se explica porque es un método intuitivo y fácil de implementar. Solamente hay que identificar el punto en el que la disminución de la varianza intra-clúster se desacelera, lo que indica que … [Leer más...] acerca de Método del codo (Elbow method) para seleccionar el número óptimo de clústeres en K-means
Cuatro Aplicaciones de la Inteligencia Artificial en la Moda
La industria de la moda es un sector en constante evolución, donde la innovación y la creatividad son esenciales para mantenerse al día con las tendencias y las demandas de los consumidores. Por eso la inteligencia artificial (IA) puede ayudar también a esta industria. En esta publicación analizaré cuatro posibles aplicaciones de la inteligencia artificial en la … [Leer más...] acerca de Cuatro Aplicaciones de la Inteligencia Artificial en la Moda
Optimizar el número de clústeres con gap statistics
El mayor problema con el que nos podemos encontrar a la hora de usar el algoritmo de k-means es conocer el número de clústeres en los que se divide el conjunto de datos. Un hiperparámetro que en Scikit-learn debe ser indicado al construir el objeto. Por eso existen múltiples métodos para seleccionar este valor como los métodos del codo (elbow method), silueta (silhouette) o … [Leer más...] acerca de Optimizar el número de clústeres con gap statistics
Cuatro aplicaciones de la Inteligencia Artificial en Transporte y Logística
Las aplicaciones basadas en inteligencia artificial (IA) están revolucionando múltiples industrias en los últimos años, el transporte de mercancías y la logística no son una excepción. Siendo posible que en este sector una transformación sin precedentes en los próximos años. A continuación, se presentan cuatro de las principales aplicaciones de la inteligencia artificial en … [Leer más...] acerca de Cuatro aplicaciones de la Inteligencia Artificial en Transporte y Logística
Análisis de sentimientos en español con spaCy en Python
La semana pasada se vio cómo se puede realizar análisis se sentimientos en inglés con NLTK. A pesar de que NLTK es una librería muy potente, no cuenta con un lematizador para español, por lo que no es adecuado para trabajar en nuestro idioma. Una alternativa que sí permite realizar análisis de sentimientos en español en Python es spaCy, la cual también es bastante fácil de … [Leer más...] acerca de Análisis de sentimientos en español con spaCy en Python
Seleccionar el número de bins en un histograma
Emplear la cantidad adecuada de bins a la hora de crear un histograma es un factor clave para visualizar estos de forma correcta. Cuando se usan demasiados bins, los histogramas resultantes muestran básicamente ruido, mientras el caso contrario, menos de los necesarios, puede ocultar los patrones que se desean observar en la gráfica. Problema que se ha explicado en detalle en … [Leer más...] acerca de Seleccionar el número de bins en un histograma











