• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • IA Generativa
  • Python
  • Pandas
  • NumPy
  • R
  • Excel

Ciencia de datos

La ciencia de datos es un área de conocimiento interdisciplinar en el cual se utilizan procesos para recopilar, preparar, analizar, visualizar y modelar datos para extraer todo su valor. Pudiéndose emplear tanto con conjuntos de datos estructurados como no estructurados. Los científicos de datos, los profesionales de esta área deben poseer grandes conocimientos de estadística e informática. Además de conocimiento de los procesos que están modelando.

Con la ciencia de datos es posible revelar tendencias y obtener información para que tanto las empresas como las instituciones puedan tomar mejores decisiones. Basando estas así en conocimiento validado no en intuiciones.

Las publicaciones de esta sección abarca diferentes temas de áreas como la estadística, la minería de datos, el aprendizaje automático y la analítica predictiva.

El índice de Davies-Bouldinen para estimar los clústeres en k-means e implementación en Python

junio 30, 2023 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 5 minutos

Uno de los mayores problemas a la hora de trabajar con el algoritmo de k-means es la necesidad de conocer el número de clústeres en los que se debe dividir el conjunto de datos. Para lo que existen diferentes métodos como el del codo, la Silhouette, Gap Statistics o Calinski-Harabasz. En esta ocasión se va a ver otro método bastante popular, el braseado en el índice de … [Leer más...] acerca de El índice de Davies-Bouldinen para estimar los clústeres en k-means e implementación en Python

Cuatro aplicaciones de la Inteligencia Artificial en Política

junio 28, 2023 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 4 minutos

Aunque la política es una actividad puramente humana, el rápido avance de la inteligencia artificial (IA) también ha traído aplicaciones a esta área. Lo que ha dejado claro la IA es su capacidad para mejorar la eficiencia de los procesos, realizar análisis de datos sofisticados y ofrecer soluciones a problemas complejos. Necesidades que no escapan a la política. En este ensayo … [Leer más...] acerca de Cuatro aplicaciones de la Inteligencia Artificial en Política

Número óptimo de clústeres con Silhouette e implementación en Python

junio 23, 2023 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 3 minutos

La Silhouette es una métrica que permite evaluar la calidad de los clústeres generados mediante algoritmos de clustering basados en la distancia euclídea. Como es el caso de k-means. Cuantificando la relación que existe entre la separación de los diferentes clústeres y la similitud entre los puntos de un mismo clúster en un valor que varía entre -1 y 1. Los valores cercanos a 1 … [Leer más...] acerca de Número óptimo de clústeres con Silhouette e implementación en Python

Cuatro aplicaciones de la Inteligencia Artificial en el Deporte

junio 21, 2023 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 3 minutos

Es obvio que la inteligencia artificial (IA) ha experimentado un crecimiento exponencial en las últimas décadas. Abarcando sus casos de uso una amplia variedad de áreas. El deporte no es la excepción, y la IA se ha convertido en una herramienta clave en el ámbito deportivo, ayudando a mejorar el rendimiento de los deportistas, analizar el juego y ayudando en el desarrollo de … [Leer más...] acerca de Cuatro aplicaciones de la Inteligencia Artificial en el Deporte

Identificar el número de clústeres con Calinski-Harabasz en k-means e implementación en Python

junio 16, 2023 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 3 minutos

Cuando se desea realizar análisis de clúster uno de los algoritmos más utilizados es k-means. Lo que se explica por los buenos resultados que suele ofrecer con la mayoría de los conjuntos de datos y su simplicidad. Pero tiene un problema, es necesario conocer el número de clústeres en los que se debe dividir el conjunto de datos. Por lo que existen diferentes métodos como el … [Leer más...] acerca de Identificar el número de clústeres con Calinski-Harabasz en k-means e implementación en Python

Cuatro aplicaciones de la Inteligencia Artificial en Sanidad

junio 14, 2023 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 3 minutos

La inteligencia artificial (IA) está transformando la forma en que se abordan los problemas de salud. Produciendo importantes avances en el diagnóstico, tratamiento y prevención de enfermedades. En esta publicación vamos a mostrar algunas de las principales aplicaciones de la inteligencia artificial en sanidad.Diagnóstico y detección temprana de enfermedadesLa IA se … [Leer más...] acerca de Cuatro aplicaciones de la Inteligencia Artificial en Sanidad

Método del codo (Elbow method) para seleccionar el número óptimo de clústeres en K-means

junio 9, 2023 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 3 minutos

Posiblemente la técnica más utilizada para identificar el número óptimo de clústeres en los que dividir un conjunto de datos con K-means sea el método del codo (elbow method). Lo que se explica porque es un método intuitivo y fácil de implementar. Solamente hay que identificar el punto en el que la disminución de la varianza intra-clúster se desacelera, lo que indica que … [Leer más...] acerca de Método del codo (Elbow method) para seleccionar el número óptimo de clústeres en K-means

Cuatro Aplicaciones de la Inteligencia Artificial en la Moda

junio 7, 2023 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 4 minutos

La industria de la moda es un sector en constante evolución, donde la innovación y la creatividad son esenciales para mantenerse al día con las tendencias y las demandas de los consumidores. Por eso la inteligencia artificial (IA) puede ayudar también a esta industria. En esta publicación analizaré cuatro posibles aplicaciones de la inteligencia artificial en la … [Leer más...] acerca de Cuatro Aplicaciones de la Inteligencia Artificial en la Moda

Optimizar el número de clústeres con gap statistics

junio 2, 2023 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 4 minutos

El mayor problema con el que nos podemos encontrar a la hora de usar el algoritmo de k-means es conocer el número de clústeres en los que se divide el conjunto de datos. Un hiperparámetro que en Scikit-learn debe ser indicado al construir el objeto. Por eso existen múltiples métodos para seleccionar este valor como los métodos del codo (elbow method), silueta (silhouette) o … [Leer más...] acerca de Optimizar el número de clústeres con gap statistics

Cuatro aplicaciones de la Inteligencia Artificial en Transporte y Logística

mayo 31, 2023 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 4 minutos

Las aplicaciones basadas en inteligencia artificial (IA) están revolucionando múltiples industrias en los últimos años, el transporte de mercancías y la logística no son una excepción. Siendo posible que en este sector una transformación sin precedentes en los próximos años. A continuación, se presentan cuatro de las principales aplicaciones de la inteligencia artificial en … [Leer más...] acerca de Cuatro aplicaciones de la Inteligencia Artificial en Transporte y Logística

Análisis de sentimientos en español con spaCy en Python

mayo 29, 2023 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

La semana pasada se vio cómo se puede realizar análisis se sentimientos en inglés con NLTK. A pesar de que NLTK es una librería muy potente, no cuenta con un lematizador para español, por lo que no es adecuado para trabajar en nuestro idioma. Una alternativa que sí permite realizar análisis de sentimientos en español en Python es spaCy, la cual también es bastante fácil de … [Leer más...] acerca de Análisis de sentimientos en español con spaCy en Python

Seleccionar el número de bins en un histograma

mayo 26, 2023 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 4 minutos

Histograma generado para el conjunto de datos con la selección automática del número de bins

Emplear la cantidad adecuada de bins a la hora de crear un histograma es un factor clave para visualizar estos de forma correcta. Cuando se usan demasiados bins, los histogramas resultantes muestran básicamente ruido, mientras el caso contrario, menos de los necesarios, puede ocultar los patrones que se desean observar en la gráfica. Problema que se ha explicado en detalle en … [Leer más...] acerca de Seleccionar el número de bins en un histograma

  • « Ir a la página anterior
  • Página 1
  • Páginas intermedias omitidas …
  • Página 4
  • Página 5
  • Página 6
  • Página 7
  • Página 8
  • Páginas intermedias omitidas …
  • Página 16
  • Ir a la página siguiente »

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Curiosidad: ¿Por qué los datos “raros” son tan valiosos?

noviembre 6, 2025 Por Daniel Rodríguez

Cómo generar contraseñas seguras con Python (y entender su nivel de seguridad)

noviembre 4, 2025 Por Daniel Rodríguez

Cómo ejecutar JavaScript desde Python: Guía práctica con js2py

octubre 30, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Curiosidad: ¿Por qué los datos “raros” son tan valiosos? publicado el noviembre 6, 2025 | en Ciencia de datos, Opinión
  • Redondear la hora en Python para agrupar datos publicado el octubre 26, 2020 | en Python
  • Diferencias entre CPU, GPU, TPU y NPU publicado el abril 19, 2023 | en Herramientas
  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas publicado el mayo 10, 2019 | en Python
  • Convertir un Notebook en un archivo de Python publicado el marzo 2, 2022 | en Herramientas, Python

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto