• Saltar al contenido principal
  • Skip to secondary menu
  • Saltar a la barra lateral principal
  • Saltar al pie de página
  • Inicio
  • Secciones
    • Ciencia de datos
    • Criptografía
    • Herramientas
    • Machine Learning
    • Noticias
    • Opinión
    • Productividad
    • Programación
      • JavaScript
      • Julia
      • Matlab
      • Python
      • R
  • Programación
    • JavaScript
    • Julia
    • Matlab
    • Python
    • R
  • Laboratorio
    • Encuestas: Tamaño de Muestra
    • Lotería: Probabilidad de Ganar
    • Reparto de Escaños (D’Hondt)
    • Tres en Raya con IA
  • Noticias
  • Boletín
  • Contacto
  • Tienda
    • Libros
    • Equipamiento de oficina
    • Equipamiento en movilidad
    • Tiendas afiliadas
      • AliExpress
      • Amazon
      • Banggood
      • GeekBuying
      • Lenovo

Analytics Lane

Ciencia e ingeniería de datos aplicada

  • Ciencia de datos
  • Machine Learning
  • IA Generativa
  • Python
  • Pandas
  • NumPy
  • R
  • Excel

Ciencia de datos

La ciencia de datos es un área de conocimiento interdisciplinar en el cual se utilizan procesos para recopilar, preparar, analizar, visualizar y modelar datos para extraer todo su valor. Pudiéndose emplear tanto con conjuntos de datos estructurados como no estructurados. Los científicos de datos, los profesionales de esta área deben poseer grandes conocimientos de estadística e informática. Además de conocimiento de los procesos que están modelando.

Con la ciencia de datos es posible revelar tendencias y obtener información para que tanto las empresas como las instituciones puedan tomar mejores decisiones. Basando estas así en conocimiento validado no en intuiciones.

Las publicaciones de esta sección abarca diferentes temas de áreas como la estadística, la minería de datos, el aprendizaje automático y la analítica predictiva.

Descubriendo anomalías con HBOS (Histogram-Based Outlier Score)

mayo 10, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

Las anomalías, también conocidas como ”outliers”, son puntos que se desvían significativamente de la mayoría de los otros puntos en un conjunto de datos. Por lo que saber detectarlas es una tarea clave en múltiples aplicaciones. Empezando por la seguridad informática, donde los ataques tienen un patrón diferente al uso legítimo de los recursos, hasta en mantenimiento … [Leer más...] acerca de Descubriendo anomalías con HBOS (Histogram-Based Outlier Score)

Introducción al Análisis de Componentes Principales (PCA)

mayo 3, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

El Análisis de Componentes Principales (PCA) es una técnica ampliamente utilizado en aprendizaje automático. Se utiliza para reducir la dimensionalidad (el número de variables o columnas) de los conjuntos de datos manteniendo al mismo tiempo la mayor cantidad de información posible. PCA transforma las variables originales en otras nuevas, llamadas componentes principales, … [Leer más...] acerca de Introducción al Análisis de Componentes Principales (PCA)

Desmitificando Elliptic Envelope: Una exploración de la detección de anomalías con estimación de covarianza elíptica

abril 26, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

Entre los algoritmos de Machine Learning para la detección de anomalías Elliptic Envelope destaca por su capacidad para modelar la distribución de los datos utilizando una elipse en el espacio de características. Un enfoque efectivo para identificar anomalías en conjuntos de datos multivariados donde la mayoría de los datos se distribuyen de manera normal. Lo que lo convierte … [Leer más...] acerca de Desmitificando Elliptic Envelope: Una exploración de la detección de anomalías con estimación de covarianza elíptica

La distancia de Mahalanobis

abril 19, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 4 minutos

Dentro del aprendizaje automático, es habitual tener que trabajar con conjuntos de datos multidimensionales donde las variables están interrelacionadas. En estos casos, para cuantificar la similitud entre puntos, es aconsejable tener en cuenta la estructura de los propios datos. Algo que no sucede en las distancias usadas habitualmente como la Euclídea. Una métrica que si tiene … [Leer más...] acerca de La distancia de Mahalanobis

Explorando Local Outlier Factor (LOF): Un enfoque eficaz para la detección de anomalías

abril 12, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 5 minutos

Los modelos de detección de anomalías es una parte del aprendizaje automático en la que cada vez existe un mayor interés. Siendo una tarea crítica en diferentes áreas como la seguridad informática, el mantenimiento predictivo o el monitoreo de la salud. Uno de los algoritmos más populares para esta tarea es Local Outlier Factor (LOF). Este algoritmo identifica las anomalías de … [Leer más...] acerca de Explorando Local Outlier Factor (LOF): Un enfoque eficaz para la detección de anomalías

Introducción a XGBoost: Instalación y primeros pasos

abril 5, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 4 minutos

XGBoost (Extreme Gradient Boosting) es un algoritmo que ha ganado popularidad entre los científicos de datos debido a su potencia y eficiencia. En esta entrada se explicará qué es XGBoost, cómo instalarlo en Python y un cómo se puede usar en un caso práctico.¿Qué es XGBoost?XGBoost es un algoritmo de aprendizaje supervisado basado en árboles de decisión, diseñado para … [Leer más...] acerca de Introducción a XGBoost: Instalación y primeros pasos

Normalización de datos: Maximizando el rendimiento de los modelos de Aprendizaje Automático

marzo 22, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

La preparación de los datos es una parte clave del éxito de los modelos de aprendizaje automático o Machine Learning. Siendo una parte fundamental del trabajo para garantizar que los modelos puedan aprender de manera efectiva y eficiente. Una de las técnicas más sencillas y utilizadas durante la fase de preparación de los datos es la normalización de datos. En esta entrada, se … [Leer más...] acerca de Normalización de datos: Maximizando el rendimiento de los modelos de Aprendizaje Automático

One-Class SVM: Detección de anomalías con máquinas de vector soporte

marzo 15, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

Gráfica con los datos y las anomalías detectadas con OneClass SVM

La detección de anomalías es una de las aplicaciones del aprendizaje no supervisado más utilizadas. Siendo una técnica que se emplea en casos tan diferentes como la detección de ataques cibernéticos, la detección de problemas de salud o la identificación de aplicaciones fraudulentas en servicios financieros o seguros. En todos los casos, identificar anomalías requiere localizar … [Leer más...] acerca de One-Class SVM: Detección de anomalías con máquinas de vector soporte

Diferencia entre R2 y R2 ajustado en modelos de regresión

marzo 8, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 3 minutos

Usar la métrica adecuada es clave para comprender cuán bien se ajusta un modelo a los datos. En los modelos de regresión existen dos métricas usadas habitualmente que son el coeficiente de determinación (R2) y el coeficiente de determinación ajustado (R2 ajustado). Aunque ambos ofrecen buena información de la calidad del ajuste del modelo a los datos reales, difieren … [Leer más...] acerca de Diferencia entre R2 y R2 ajustado en modelos de regresión

Isolation Forest: Detectando Anomalías con Eficacia

marzo 1, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

La detección de anomalías es uno de los desafíos más intrigantes del aprendizaje automático. Ya sea en el campo de la seguridad informática, la detección de fraudes financieros o en tareas de mantenimiento predictivo, identificar valores anómalos dentro de grandes conjuntos de datos es clave para evitar problemas en las operaciones. En esta entrada se explicará el algoritmo de … [Leer más...] acerca de Isolation Forest: Detectando Anomalías con Eficacia

Resumir PDF con Python y OpenAI

febrero 28, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 5 minutos

Actualmente, los documentos PDF son una parte fundamental para el intercambio de información. Siendo un formato omnipresente. Es normal encontrarse con ellos en una amplia gama de contextos como los informes empresariales, los documentos académicos y la publicación de normativa. Por ello es habitual encontrarse con la necesidad de extraer la información relevante de miles de … [Leer más...] acerca de Resumir PDF con Python y OpenAI

Selección del valor óptimo de K en SelecKBest de scikit-learn

febrero 23, 2024 Por Daniel Rodríguez Deja un comentario
Tiempo de lectura: 6 minutos

Para poder entrenar un modelo de aprendizaje automático de forma correcta es necesario seleccionar las características. Un proceso clave para mejorar el rendimiento de los modelos. En Python, uno de los posibles métodos para ello es SelectKBest (o su equivalente SelectPercentile). Una de las herramientas de selección de características que se encuentran disponibles en … [Leer más...] acerca de Selección del valor óptimo de K en SelecKBest de scikit-learn

  • « Ir a la página anterior
  • Página 1
  • Página 2
  • Página 3
  • Página 4
  • Página 5
  • Página 6
  • Páginas intermedias omitidas …
  • Página 16
  • Ir a la página siguiente »

Barra lateral principal

Suscríbete a nuestro boletín

Suscríbete al boletín semanal para estar al día de todas las publicaciones.

Política de Privacidad

Analytics Lane en redes sociales

  • Amazon
  • Bluesky
  • Facebook
  • GitHub
  • Instagram
  • Mastodon
  • Pinterest
  • RSS
  • Telegram
  • Tumblr
  • Twitter
  • YouTube

Publicidad

Entradas recientes

Curiosidad: ¿Por qué los datos “raros” son tan valiosos?

noviembre 6, 2025 Por Daniel Rodríguez

Cómo generar contraseñas seguras con Python (y entender su nivel de seguridad)

noviembre 4, 2025 Por Daniel Rodríguez

Cómo ejecutar JavaScript desde Python: Guía práctica con js2py

octubre 30, 2025 Por Daniel Rodríguez

Publicidad

Es tendencia

  • Curiosidad: ¿Por qué los datos “raros” son tan valiosos? publicado el noviembre 6, 2025 | en Ciencia de datos, Opinión
  • Redondear la hora en Python para agrupar datos publicado el octubre 26, 2020 | en Python
  • Diferencias entre CPU, GPU, TPU y NPU publicado el abril 19, 2023 | en Herramientas
  • Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas publicado el mayo 10, 2019 | en Python
  • Convertir un Notebook en un archivo de Python publicado el marzo 2, 2022 | en Herramientas, Python

Publicidad

Lo mejor valorado

4.9 (24)

Seleccionar filas y columnas en Pandas con iloc y loc

4.6 (16)

Archivos JSON con Python: lectura y escritura

4.4 (14)

Ordenación de diccionarios en Python mediante clave o valor

4.7 (13)

Operaciones de filtrado de DataFrame con Pandas en base a los valores de las columnas

4.5 (10)

Diferencias entre var y let en JavaScript

Publicidad

Comentarios recientes

  • Daniel Rodríguez en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • Pepe en Probabilidad básica: cómo entender el azar en nuestra vida diaria
  • CARLOS ARETURO BELLO CACERES en Justicio: La herramienta gratuita de IA para consultas legales
  • Piera en Ecuaciones multilínea en Markdown
  • Daniel Rodríguez en Tutorial de Mypy para Principiantes

Publicidad


Footer

Analytics Lane

  • Acerca de Analytics Lane
  • Boletín de noticias
  • Contacto
  • Libros
  • Lo más popular
  • Noticias
  • Tienda
  • Tiendas afiliadas

Secciones

  • Ciencia de datos
  • Criptografía
  • Herramientas
  • Machine Learning
  • Opinión
  • Productividad
  • Programación
  • Reseñas

Sobre de Analytics Lane

En Analytics Lane tratamos de explicar los principales conceptos de la ciencia e ingeniería de datos con un enfoque práctico. Los principales temas tratados son ciencia de datos, ingeniería de datos, inteligencia artificial, machine learning, deep learning y criptografía. Además, también se habla de los principales lenguajes de programación y herramientas utilizadas por los científicos e ingenieros de datos.

Copyright © 2018-2025 Analytics Lane ·Términos y condiciones ·Política de Cookies ·Política de Privacidad ·Herramientas de privacidad ·Contacto